> wyvy2bjbje{{)
>>$P
t,]]]]]888+++++++$
/1+k88kk+]]+kN]]+k+r)T*]p07~j"*v++0,0*2#2*2*8^Lf888++5888,kkkk2888888888>!_:TEMPLATE FOR A WORKSHOP SCIENTIFIC REPORT
TITLE
Write here the title of the workshop
DATE
Write here the date of the workshop (es. 7-11 September 2009)
ORGANIZERS
Write here the Surname, Name, Affiliation and Country of the Organizer
[es D. Binosi (ECT*, Italy)]
Organizer 2
Organizer 3
.
Organizer n
NUMBER OF PARTICIPANTS
Es. 55
MAIN TOPICS
Es.
[The general theme of the workshop concerned techniques for gauge-invariant calculations of off-shell Green's functions in non-Abelian gauge theories such as Quantum Chromodynamics (QCD), and their relationship to other approaches to QCD, including lattice simulations and phenomenology. Of critical interest was the infrared behavior of such gauge theories, where all non-perturbative phenomena (confinement, chiral symmetry breakdown, non-integral topological charge) have their roots. We especially hoped that the lattice and the continuum communities would find at the Workshop, and later explore, new ways of this most difficult problem of non-perturbative QCD.]
The main topics were
Main topic 1
Main topic 2
Main topic n
SPEAKERS:
Write here the Name Surname Affiliation and Country of each participant
Es.
[C, Aguilar (Federal Univ. of ABC, Brazil)]
Participant 2
Participant 3
Participant n
SCIENTIFIC REPORT:
Es.
[Non-Abelian gauge theories have been at the centre stage of elementary particle physics for the last four decades, since the establishment of electroweak gauge theory and, a few years later, QCD, the theory describing strong interactions. Unlike quantum electrodynamics, which yields with spectacular success to perturbation theory and Feynman-diagram techniques, only the ultraviolet (high-energy) regime of QCD is amenable to a perturbative treatment, due to the characteristic property of asymptotic freedom. The infrared sector of QCD, on the other hand, is the host of several non-perturbative phenomena, which most famously encompass quark confinement and dynamical mass generation, and powerful methods must be employed for their quantitative treatment.
The basic building blocks of QCD are the Greens (correlation) functions of the fundamental physical degrees of freedom, gluons and quarks, and of the unphysical ghosts. Even though it is well-known that these quantities are not physical, since they depend on the gauge-fixing scheme and parameters used to quantize the theory, it is widely believed that reliable information on their non-perturbative structure is essential for unravelling the infrared dynamics of QC. In addition to their relevance for phenomenology, the QCD Greens functions encode information on confinement, albeit in a rather subtle way.
The two basic non-perturbative tools that permit the exploration of the infrared domain of QCD are (i) the lattice, where space-time is discretized and the quantities of interest are evaluated numerically, and (ii) the infinite set of integral equations governing the dynamics of the QCD Greens functions, known as Schwinger-Dyson equations (SDE). While the lattice calculations are limited by the lattice size used, the problem of the Gribov copies, and the extrapolation of the numerical results to the continuous limit, the fundamental conceptual difficulty in treating the SDE resides in the need for a self-consistent truncation scheme, i.e., one that does not compromise the gauge-invariance of the quantities studied.
These two methods are actively applied in all the areas which were covered by the workshop; in fact about half the attendees of QCD-TNT worked in continuum theory and half in lattice simulations. The multiple QCD competing themes addressed in the workshop can be summarized as follows.
Does the QCD gluon have a dynamical mass, coming from solving Schwinger-Dyson equations (sometimes called the decoupling solution) for the gauge propagator and ghost and yielding finite gauge and ghost dressing functions at zero momentum? Or do the gauge and ghost propagators of the equations show a power-law behavior for small momentum, including a ghost dressing function diverging at zero momentum (called the scaling solution)?
Is the Gribov-Zwanziger (GZ) picture, emphasizing the Landau gauge and gauge copies of the gauge potential, consistent with either or neither of the above views? How is the GZ picture realized non-perturbatively?
What do lattice simulations say about the previous two topics?
In addition to these main themes there were a number of other subjects covered in the Workshop, represented by one or a few speakers each, including:
Continuum and lattice studies of the Coulomb gauge; three-dimensional QCD and the functional Schrodinger equation; five-dimensional QCD simulations; calculations and lattice simulations in QCD at finite temperature and density; fermions and chiral symmetry breaking in QCD; the role of calorons or other topological solitons; glueballs; the AdS/CFT view of QCD; and QCD phenomenology.]
RESULT AND HIGHLIGHTS
Es.
[The Workshop was a very useful opportunity to balance the aforementioned competing views, and this was in fact perceived by all the participants.
Notwithstanding the fact that consensus on the decoupling vs scaling issue (first three topics above) has not been achieved, and that at the Workshop there were dissenters, it is fair to say the participants were leaning toward the decoupling picture of a massive gluon and non-singular ghost dressing function, and that lattice simulations probing the region of near-zero propagator momentum are largely in support of this picture.
The GZ scenario is currently in a confused state, with different authors making different claims at the Workshop. In view of the growing support from lattice simulations of the decoupling" picture, some are trying to incorporate a massive gluon into the original GZ effective action, with varying degrees of success. Others claim that a confinement criterion due to Kugo and Ojima is wrong and needs to be revised; the revision would favour the decoupling scenario. Yet others claim that this revision is incorrect. It appears now that lattice simulations support the revision rather quantitatively; on the other hand claims were made that this agreement may be coincidental.
The Coulomb gauge picture of QCD is in an interesting state of evolution. It is now apparent both in the continuum and on the lattice that Coulomb gauge gluon propagators are very different from those of either the Landau gauge or the Pinch Technique; these Landau or PT propagators support the center vortex picture. Most Workshop practitioners of the Coulomb gauge are strong supporters of the center vortex picture, so the question is how to reconcile Coulomb gauge and center vortices. Some interesting proposals that might do this were made, but they need more work.
A complete and detailed discussion of the results of the fourth topic above, would be too lengthy; we will simply say that taken as a whole they seem to be consistent with the emerging majority view of the work presented for the main three topics.]
Monday 7Tuesday 8Wednesday 9Thursday 10Friday 1109:15J. Greensite
Aspects of Confinement in Coulomb GaugeJ M Cornwall
Open issues in confinement, for the lattice and for center vorticesV. Zakharov
Topological solutions in dual formulation of Yang-Mills theoriesJ-P. BlaizotW. Weise
Symmetry breaking patterns in QCD: chiral and deconfinement transitions09:50Y. Simonov
Confinement, deconfinement and chiral symmetry breaking in QCDPh de Forcrand
Confinement in (4+1) dimensionsA. Szczepaniak
Gluon properties in magnetically confining vacuumM. DElia
Magnetic monopoles in the deconfined phase of Yang-Mills theoriesG. W. Semenoff
Large representation Polyakov loop in hot Yang-Mills theory10:25M. Lavelle
Infrared problems and a responseK. Langfeld
A fresh look at the confinement mechanismS. Olejnik
Vacuum structure and Casimir scaling in Yang-Mills theoriesS. Hands
Lattice study of dense two color matterC. Ratti
The role of monopoles in a gluon plasma11:00Coffee break @ ECT* garden11:30T. Mendes
Numerical test of the Gribov-Zwanziger scenario in landau gaugeH. Suganuma
Lattice QCD Analysis for GluonsP. Minkowski
QCD as basic field theory: diffculties to build new bridges from perturbative regions to simple properties of hadronsP. Nair
The Hamiltonian approach to Yang-Mills (2+1): An update and corrections to string tensionE-M. Ilgenfritz
Multidyon picture for confinement and deconfinement12:05J. Papavassiliou
Gluon masses without seagull divergencesL. Giusti
On the Banks-Casher relation with Wilson fermionsH. Reinhardt
Hamiltonian approach to Yang-Mills theory in Coulomb gaugeO. Philipsen
Screened perturbation theory for 3D Yang-Mills and hot QCDD. Antonov
Shear viscosity of the gluon plasma in the stochastic-vacuum approach13:00Lunch @ ECT* Canteen14:30M. Creutz
Gluon masses without seagull divergencesD. Binosi
On the dynamics of the Kugo-Ojima functionT-W. Chiu
Topological quantum fluctuations in the QCD vacuumA. C. Aguilar
Non-perturbative QCD effective chargesV. Sauli
General method of solution of Schwinger-Dyson equations in Minkowski space15:05O. Pene
Gluon masses without seagull divergencesJ Gracey
The static potential in the Gribov-Zwanziger LagrangianP. Tandy
How much meson physics can one tie to DCSBD. Dudal
Aspects of the Gribov-Zwanziger frameworkP. Bicudo
Schwinger-Dyson equations and the quark-antiquark static potential15:40J. Rodriguez-Quintero
A ghost story (II): Ghost, gluons and the gluon condensate beyond the IR of QCDK-I. Kondo
Gribov-Zwanziger horizon condition, ghost and gluon propagators and Kugo-Ojima confinement criterionA. Cucchieri
Simulating linear covariant gauges on the lattice: a new approachN. Vandersickel
A candidate for the scalar glueball operator within the refined Gribov-Zwanziger frameworkA. Ilderton
Physical charges in QED and QCD16:15Coffee break @ ECT* garden16:45A. Natale
QCD phenomenology with infrared finite SDE solutionsR. Ferrari
Beyond renormalization: an essay on nonlinear sigma model, massive YM and Electroweak ModelO. Oliveira
The lattice infrared Landau gauge gluon propagator: from finite volume to the infinite volumeD. Mehta
Lattice Landau Gauge and algebraic geometryV. Mathieu
Gluon mass and glueball spectrum
17:20H. Forkel
Hadrons as hologramsA. Quadri
The Electroweak model based on the nonlinearly realized gauge groupJ. Skullerud
Gluons and deconfinement at high densityM. Trusov
New developments of Dirac orbital approach in the low-energy QCDR. Millo
Effective action for low-energy quantum field fluctuations20:00Dinner @ ECT*Dinner @ La BaraccaDinner @ PatelliSoc. dinner @ Orso GrigioPizza @ Alla Mostra
+,12VWX\]ítaKt99a"h2CJOJQJ^JaJmH sH +hj}hj}5CJOJQJ^JaJmH sH %hj}5CJOJQJ^JaJmH sH "hj}CJOJQJ^JaJmH sH "h&@CJOJQJ^JaJmH sH (hj}hj}CJOJQJ^JaJmH sH +hj}hj}5CJOJQJ^JaJmH sH %hF5CJOJQJ^JaJmH sH +hFhF5CJOJQJ^JaJmH sH %h%q5CJOJQJ^JaJmH sH *+,2WX] # & 2 3 J Q R ^ b $x7$8$H$a$gdn 7$8$H$gd2x7$8$H$gdn 7$8$H$gdj}
1 2 3 I J ĲĝygR?g%hj}5CJOJQJ^JaJmH sH (hj}h&@CJOJQJ^JaJmH sH "hj}CJOJQJ^JaJmH sH "hjCJOJQJ^JaJmH sH "hCJOJQJ^JaJmH sH (h2h2CJOJQJ^JaJmH sH "h9hCJOJQJ^JaJmH sH "h&@CJOJQJ^JaJmH sH +hj}hj}5CJOJQJ^JaJmH sH %h5CJOJQJ^JaJmH sH J N P Q R ] ^ c m
}
+ʷ{eReHW\ְt^L:L"hHCJOJQJ^JaJmH sH "h&@CJOJQJ^JaJmH sH +hj}hj}5CJOJQJ^JaJmH sH %h5CJOJQJ^JaJmH sH %hj}CJOJQJ]^JaJmH sH +hhCJOJQJ]^JaJmH sH %h&@CJOJQJ]^JaJmH sH %h1CJOJQJ]^JaJmH sH +hhCJOJQJ]^JaJmH sH %hCJOJQJ]^JaJmH sH !.0=>H
c9$1$3$5$7$8$G$H$a$gdRC$x7$8$H$a$gdn 7$8$H$gdRC
h7$8$H$^hgdRCx7$8$H$gdn 7$8$H$gd
&F7$8$H$gd
ǵܠ|jWA.%hh#H5CJOJQJ^JaJmH sH +hj}hj}5CJOJQJ^JaJmH sH %hj}5CJOJQJ^JaJmH sH "h&@CJOJQJ^JaJmH sH "hj}CJOJQJ^JaJmH sH "hCJOJQJ^JaJmH sH (hhCJOJQJ^JaJmH sH "hHCJOJQJ^JaJmH sH (hhHCJOJQJ^JaJmH sH "h&@CJOJQJ^JaJmH sH "h1CJOJQJ^JaJmH sH
1
7
>
]
+J8Wo6T<Cc!B/~֭֚և֚֭֭֭և֭֭֭֭֭֭֭֭q+hJihh#HCJOJQJ]^JaJmH sH %hcCJOJQJ]^JaJmH sH %hh#HCJOJQJ]^JaJmH sH %hnCJOJQJ]^JaJmH sH +hh#HhnCJOJQJ]^JaJmH sH +hh#Hhh#HCJOJQJ]^JaJmH sH %h&@CJOJQJ]^JaJmH sH *~89ӽ{eR@+(hh#Hhh#HCJOJQJ^JaJmH sH "hnCJOJQJ^JaJmH sH %hh#HCJOJQJ]^JaJmH sH +hh#HhRCCJOJQJ]^JaJmH sH +hh#HhRCCJOJQJ]^JaJmH sH +hJihRCCJOJQJ]^JaJmH sH +hJihh#HCJOJQJ]^JaJmH sH +hJihnCJOJQJ]^JaJmH sH +hJihh#HCJOJQJ]^JaJmH sH +hJihJiCJOJQJ]^JaJmH sH
V)R
'OT hi
.N:(hchh#HCJOJQJ^JaJmH sH (hchcCJOJQJ^JaJmH sH "hJiCJOJQJ^JaJmH sH "hnCJOJQJ^JaJmH sH (hh#Hhh#HCJOJQJ^JaJmH sH "hcCJOJQJ^JaJmH sH 09W
"<=STXB "x#$7$8$H$a$gd"o$x7$8$H$a$gdU8x7$8$H$gdk 7$8$H$gdj}$
&F7$8$H$a$gdc$x7$8$H$a$gd"o
&Fx7$8$H$gdc$
&F<7$8$H$a$gdc$x7$8$H$a$gdn:;<=RSTYZikxưvdOdOdOd=+"hU8CJOJQJ^JaJmH sH "hkCJOJQJ^JaJmH sH (hDKJhDKJCJOJQJ^JaJmH sH "hDKJCJOJQJ^JaJmH sH "h&@CJOJQJ^JaJmH sH "hj}CJOJQJ^JaJmH sH +hj}hj}5CJOJQJ^JaJmH sH +hj}hj}5CJOJQJ^JaJmH sH %hj}5CJOJQJ^JaJmH sH (hh#Hhh#HCJOJQJ^JaJmH sH "h&@CJOJQJ^JaJmH sH GHWx-/MUuMYZdep " # A B h { !&!P!!ĲĲĲĲĲĲĲĲĲĲĲĲĲ|ĲĲĲĲ"h7]CJOJQJ^JaJmH sH "hDKJCJOJQJ^JaJmH sH "hJiCJOJQJ^JaJmH sH "hU8CJOJQJ^JaJmH sH (hDKJhDKJCJOJQJ^JaJmH sH "hkCJOJQJ^JaJmH sH (hkhkCJOJQJ^JaJmH sH 0!!!!!("H"V"t""""".#/#J#v#w#y#z######<$H$$$$$$8%G%g%ǵpWppppWpp0h'\jh'\jCJOJ PJ QJ aJmH nH sH tH 3h'\jh'\j5CJOJPJ QJaJmH nH sH tH 0h'\jh'\jCJOJPJ QJaJmH nH sH tH "h'\jCJOJQJ^JaJmH sH "h&@CJOJQJ^JaJmH sH "h"oCJOJQJ^JaJmH sH "hU8CJOJQJ^JaJmH sH (hDKJhDKJCJOJQJ^JaJmH sH "x#y#z###########<$H$$$$$ $Ifgd'\jFf"$<<$Ifa$gd'\j$$Ifa$gd'\j$7$8$H$a$gd"o$$$$ $Ifgd'\jkdD$$IfTlֈ3 q&/P9
t
09644
lap
yt'\jT$$8%G%g%v%%%%&?&$$Ifa$gd'\j
g%v%%%%&?&@&P&r&~&&&&& ')'Q'R'X's't''''''s({((())1)Z)d)))))&*1*w*x*~******++?+M+t+}++++, ,A,J,u,~,,,,,-b-̳̳̳̳̳̳̳̳0h'\jh'\jCJOJ PJ QJ aJmH nH sH tH 0h'\jh'\jCJOJPJ QJaJmH nH sH tH 3h'\jh'\j5CJOJPJ QJaJmH nH sH tH F?&@&F&$ $Ifgd'\jkd$$IfTlֈ3 q&/P9
t
09644
lap
yt'\jTF&Q&r&~&&&&& ')'Q'$$Ifa$gd'\j
Q'R'X'$ $Ifgd'\jkd$$IfTlֈ3 q&/P9
t
09644
lap
yt'\jTX's't'z''''''s(YP $Ifgd'\jkdH$$IfTl03 P9 0
t09644
lapyt'\jT$$Ifa$gd'\j s({((()$$Ifa$gd'\j)) )$ $Ifgd'\jkd
$$IfTlֈ3 q&/P9
t
09644
lap
yt'\jT )1)Z)d)))))&*1*w*$$Ifa$gd'\j
w*x*~*$ $Ifgd'\jkd$$IfTlֈ3 q&/P9
t
09644
lap
yt'\jT~*******++?+YP $Ifgd'\jkdb$$IfTl03 P9 0
t09644
lapyt'\jT$$Ifa$gd'\j ?+M+t+}++$$Ifa$gd'\j+++$ $Ifgd'\jkd$$$IfTlֈ3 q&/P9
t
09644
lap
yt'\jT++, ,A,J,u,~,,,,$$Ifa$gd'\j
,,,$ $Ifgd'\jkd$$IfTlֈ3 q&/P9
t
09644
lap
yt'\jT,-b-m---!.1....$$Ifa$gd'\j
b-m---!.1......... /+/////&010S0T0d0y000001H1Q11111111111111111̳̳̳̳̝̝̳|||h5MHjh5MHU(hj}hDKJCJOJQJ^JaJmH sH *h'\jCJOJPJ QJaJmH nH sH tH 0h'\jh'\jCJOJ PJ QJ aJmH nH sH tH 0h'\jh'\jCJOJPJ QJaJmH nH sH tH 3h'\jh'\j5CJOJPJ QJaJmH nH sH tH 0...$ $Ifgd'\jkd| $$IfTlֈ3 q&/P9
t
09644
lap
yt'\jT..... /+////YP $Ifgd'\jkd(
$$IfTl03 P9 0
t09644
lapyt'\jT$$Ifa$gd'\j //&010R0S0$$Ifa$gd'\jS0T0Z0$ $Ifgd'\jkd
$$IfTlֈ3 q&/P9
t
09644
lap
yt'\jTZ0d0y000001H1Q11$$Ifa$gd'\j
111$ $Ifgd'\jkd$$IfTlֈ3 q&/P9
t
09644
lap
yt'\jT111111111111112222gdGA 7$8$H$gdDKJFf\
$$Ifa$gd'\j1222(hj}hDKJCJOJQJ^JaJmH sH h5MHjh5MHU,1h. A!n"n#$n%51h0:p'\jA .!"#$% $$If!vh#v #v :Vl
t<0965 5 /p<yt'\jT kd$$IfTlֈ3 q&/P9
t<09644
lap<yt'\jT$$If!vh#v #v :Vl
t
096,5 5 p
yt'\jT$$If!vh#v #v :Vl
t
096,5 5 p
yt'\jT$$If!vh#v #v :Vl
t
096,5 5 p
yt'\jT$$If!vh#v #v0:Vl
t096,5 50pyt'\jT$$If!vh#v #v :Vl
t
096,5 5 p
yt'\jT$$If!vh#v #v :Vl
t
096,5 5 p
yt'\jT$$If!vh#v #v0:Vl
t096,5 50pyt'\jT$$If!vh#v #v :Vl
t
096,5 5 p
yt'\jT$$If!vh#v #v :Vl
t
096,5 5 p
yt'\jT$$If!vh#v #v :Vl
t
096,5 5 p
yt'\jT$$If!vh#v #v0:Vl
t096,5 50pyt'\jT$$If!vh#v #v :Vl
t
096,5 5 p
yt'\jT$$If!vh#v #v :Vl
t
096,5 5 p
yt'\jT$$If!vh#v #v :Vl
t<096,5 5 p<yt'\jT kdB$$IfTlֈ3 q&/P9
t<09644
lap<yt'\jTb
2 0@P`p2( 0@P`p 0@P`p 0@P`p 0@P`p 0@P`p 0@P`p8XV~PJ
_HmHnHsHtHF`FNormaleCJ_HaJmHnHsHtHLA`LCar. predefinito paragrafoXi@XTabella normale4
l4a4k 4
Nessun elencoP+@PGATesto nota di chiusuraCJaJhhGA Testo nota di chiusura CaratteremHnHsHtHL*LGARimando nota di chiusuraH*@#'\jGriglia tabella7:V0$a$CJOJ PJ QJ ^JaJPK![Content_Types].xmlN0EH-J@%ǎǢ|ș$زULTB l,3;rØJB+$G]7O٭V,cy$wc.bQKG7fK˵Riv4(xL}m{d$JfN268k.~4$
^6.%2`Z7ZW
__q#A .K[ҲMU0P3~St><~ePm$,S?xG_Te@(:/|۳'/U7Cn#c0x՜(e$8ZJ)fYt=:
x}rQxwr:\TzaG*y8IjbRc|X%'I
}3OKnD5NIB!ݥ.|]:VdHGN6͈iqVv|{u8zH
*:(W☕~JTe\O*tHGHYEsK`XaeE
Ex[8hHQrB3'}'ܧw4tT%~3N)cbZ
4uW4(tn+7_?mmٛ{UFw=wߝ$#P[Ի9{漨/%Ϻ04h=Aی©{L)#7%=A59sFSW2pp >*D8i&X\a,Wx=j6!v.^UhVdLVJYZݨf#0YiXxxyNZ4v0#Qp@icT7AsemM}pgR!M
*KhIV&Fgbe
_膖W`VcJD1#4b!:UJ0A?ݜy67bg1K#[]y%[iH橤V1 Si?3E'pp9,0ҕP.FLl]x
IWA,SpT4D~"A%}0g{e2F&JԪ="
u\{"HuM6`p'}*h!\oN'+^[crhr*lW<{ˆ1W+m_SsncY̕([@G>V/43HKv@ANv&fe]Nkf}n!fg9]g8/ٙ_۵Ȟ,QX%A)i S 3hH7PK!
ѐ'theme/theme/_rels/themeManager.xml.relsM
0wooӺ&݈Э5
6?$Q
,.aic21h:qm@RN;d`o7gK(M&$R(.1r'JЊT8V"AȻHu}|$b{P8g/]QAsم(#L[PK-![Content_Types].xmlPK-!֧60_rels/.relsPK-!kytheme/theme/themeManager.xmlPK-!theme/theme/theme1.xmlPK-!
ѐ' theme/theme/_rels/themeManager.xml.relsPK]
y*. J +
~:!g%b-12 !"#%&'+:B9x#$$?&F&Q'X's() )w*~*?+++,,../S0Z0112$()*,-./0123456789;<=>?@A8@0(
B
S ? oIoIoIoIoIoIoIoIoI!!*!!*B*urn:schemas-microsoft-com:office:smarttagscountry-region8*urn:schemas-microsoft-com:office:smarttagsCity9 *urn:schemas-microsoft-com:office:smarttagsplacez O[ u
$ %'
io!?G>Fju u}#( # > J !!#!0!]!c!!!)"0"""""Q#]#w#|#####$$%$5$6$@$x$}$$$$$m%}%%%%%$&0&L&T&q&&&&&&@(H(](c(|(((((())K)P))))))))))))))))))))**WW[\dd))*3JR^bHz@FRz! !x""##$$&&'&(T(Z()))))))))**WW[\dd))))))))))**R8L5kƙjPRۼ@h~fMh^`OJQJo(hHh^`OJQJ^Jo(hHohp^p`OJQJo(hHh@^@`OJQJo(hHh^`OJQJ^Jo(hHoh^`OJQJo(hHh^`OJQJo(hHh^`OJQJ^Jo(hHohP^P`OJQJo(hH
^`hH.
^`hH.
pL^p`LhH.
@^@`hH.
^`hH.
L^`LhH.
^`hH.
^`hH.
PL^P`LhH.h^`OJQJo(hHh^`OJQJ^Jo(hHohp^p`OJQJo(hHh@^@`OJQJo(hHh^`OJQJ^Jo(hHoh^`OJQJo(hHh^`OJQJo(hHh^`OJQJ^Jo(hHohP^P`OJQJo(hHh^`OJQJo(hHh^`OJQJ^Jo(hHohp^p`OJQJo(hHh@^@`OJQJo(hHh^`OJQJ^Jo(hHoh^`OJQJo(hHh^`OJQJo(hHh^`OJQJ^Jo(hHohP^P`OJQJo(hH@h~5kRPR $#1GA3,U8RCh#H5MHDKJWL7]9h'\jIn"oj}%qcUcdoF;jj~+HnN&[2k&@Ji))@====*@Unknown
G*Ax Times New Roman5Symbol3.*Cx Arial7.[ @Verdana5CMBX125CMSS123CMR125CMSY10A$BCambria Math7.@ CalibriG=
jMS Mincho-3 fg?= *Cx Courier New;Wingdings"qzFEj C#LC#L!nx4))
3qHX ?j}2!xx,TITLE (write here the title of the workshop)gian maria ziglioGianmaria ZiglioOh+'0 <H
ht
0TITLE (write here the title of the workshop)gian maria ziglioNormalGianmaria Ziglio5Microsoft Office Word@
@t_@~C#՜.+,0hp|
FBKL)-TITLE (write here the title of the workshop)Titolo
!"#$%&'()*+,-./0123456789:;<=>?@ABCEFGHIJKMNOPQRSTUVWXYZ[\]^_`abcdeghijklmopqrstuxRoot Entry F67~zData
D1TableL2WordDocumenteSummaryInformation(fDocumentSummaryInformation8nCompObjv
F$Documento di Microsoft Word 97-2003
MSWordDocWord.Document.89q__