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Introduction

The isotope shift of the binding energy is basically given by a sum of
the mass and field shifts:

δE = δE(MS) + δE(FS) .

The mass shift is due to the nuclear recoil effect. In the nonrelativistic
theory this effect is determined by the operator (D.S. Hughes and C. Eckart,
Phys. Rev., 1930):

HM =
1

2M

∑

i

~p2i +
1

2M

∑

i 6=j

(~pi · ~pj) .

Here the first and second terms define so-called normal and specific
mass shifts. To the first order in the electron-to-nucleus mass ratio, the
mass shift can be evaluated as

δE(MS) = 〈Ψ|(HM1
−HM2

)|Ψ〉 .
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Introduction

The field shift is due to the nuclear size effect. This effect is mainly
determined by the rms nuclear charge radius R = 〈r2〉1/2. The energy
difference between two isotopes can be approximated as

δE(FS) = Fδ〈r2〉 ,

where F is the field-shift factor and δ〈r2〉 is the mean-square charge
radius difference. In accordance with this definition, the F factor can
be calculated by

F =
dE(R)

d〈r2〉 .

Neglecting the variation of the electronic density inside the nucleus
yields

F =
2π

3
αZ|Ψ(0)|2 .
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Introduction

High-precision measurements of the isotope energy shifts in B-like
argon (R. Soria Orts et al., PRL, 2006) and in Li-like neodymium (C. Brandau et

al., PRL, 2008) have required the fully relativistic calculations.

The experiment with Li-like Nd provided determination of the nuclear
charge radius difference. The corresponding experiments can be also
performed for radioactive isotopes with a lifetime longer than about
10 s (C. Brandau et al., Hyp. Int., 2010).

With the FAIR facilities the measurements of the isotope energy shifts
in highly charged ions will be improved in accuracy by an order of
magnitude.

First measurements of the isotope shift of the g factor of highly
charged ions were recently performed for Li-like calcium (F. Köhler,
K. Blaum et al., to be published).

From the theoretical side, to meet the required accuracy one needs to
evaluate the isotope shifts including the relativistic and QED effects.
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Nuclear recoil effect in the nonrelativistic theory

Nonrelativistic Hamiltonian

H =
~P 2
n

2M
+
∑

i

~p2i
2m

−
∑

i

αZ

|~ri − ~Rn|
+
∑

i 6=j

α

|~ri − ~rj |
,

where ~Pn is the nuclear momentum operator and ~pi is the momentum
operator of the i-th electron. The binding energy is determined by the
Schrödinger equation:

HΦ = EΦ .

Since the total momentum of the atom conserves, [H, ~P ] = 0, we can
restrict our consideration to the center-of-mass frame:

~PΦ = (~Pn +
∑

i

~pi)Φ = 0.
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Nuclear recoil effect in the nonrelativistic theory

Therefore, in the center-of-mass frame:

~Pn = −
∑

i

~pi .

The kinetic energy of the nucleus:

~P 2
n

2M
=

1

2M

∑

i

~p2i +
1

2M

∑

i 6=j

(~pi · ~pj) .

The nonrelativistic nuclear recoil operator:

HM =
1

2M

∑

i

~p2i +
1

2M

∑

i 6=j

(~pi · ~pj) .

Here the first and second terms define the so-called normal and
specific mass shifts.
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Nuclear recoil effect in the Breit approximation

For simplicity, we consider the nucleus as a heavy Dirac particle. Then,
the Breit interaction between the nucleus and the atomic electrons:

VB =
∑

i

αZ

2

[ (~αn · ~αi)

|~ri − ~Rn|
+

(~αn · (~ri − ~Rn))(~αi · (~ri − ~Rn))

|~ri − ~Rn|3
]

.

In the nonrelativistic limit for the nucleus one should replace:

~αn →
~Pn

M
.

We get

VB =
αZ

2M

∑

i

[ ~αi

|~ri − ~Rn|
+

(~ri − ~Rn)(~αi · (~ri − ~Rn))

|~ri − ~Rn|3
]

· ~Pn .
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Nuclear recoil effect in the Breit approximation

In the center-of-mass frame, using

~Pn = −
∑

k

~pk ,

and replacing ~ri − ~Rn → ~ri, we get

VB = − αZ

2M

∑

i,k

[ ~αi

ri
+
~ri(~αi · ~ri)

r3i

]

· ~pk .

The total nuclear recoil operator in the Breit approximation (V.M. Shabaev,
Theor. Math. Phys., 1985; Sov. J. Nucl. Phys., 1988; C.W. Palmer, J. Phys. B, 1987):

H =
1

2M

∑

i,k

[

~pi · ~pk − αZ

ri

(

~αi +
(~αi · ~ri)~ri

r2i

)

· ~pk
]

.
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Fully relativistic theory of the nuclear recoil effect

The Breit approximation in terms of the Feynman diagrams:
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αZ
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Fully relativistic theory of the recoil effect in a H-like atom:

A typical diagram: ✄
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✂✁✂✁✂✁✂✁✂✁
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αZ

αZ

αZ

n e

To get a closed formula for the recoil correction to all orders in αZ we
need to sum all these diagrams.
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Fully relativistic theory of the nuclear recoil effect

First formulation of the problem: L.N. Labzowsky, 1972.

First analysis of all relevant Feynman diagrams: M.A. Braun, JETP, 1973.

Complete formula for the nuclear recoil effect in a H-like atom to first
order in m/M and to all orders in αZ (V.M. Shabaev, Theor. Math. Phys.,
1985):

∆E = ∆EL +∆EH

∆EL =
1

2M
〈a|
[

~p2 − αZ

r

(

~α+
(~α · ~r)~r
r2

)

· ~p
]

|a〉 ,

∆EH =
i

2πM

∫ ∞

−∞

dω 〈a|
(

~D(ω)− [~p, VC]

ω + i0

)

G(ω + εa)
(

~D(ω) +
[~p, VC]

ω + i0

)

|a〉 ,

where Dk(ω) = −4παZαiDik(ω) , Dik(ω, r) is the transverse part of
the photon propagator in the Coulomb gauge, and

G(ω) =
∑

n
|n〉〈n|

ω−εn(1−i0) is the Coulomb Green function.
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Fully relativistic theory of the nuclear recoil effect

Rederivations by other authors:
A.S. Yelkhovsky, arXiv, 1994;
K. Pachucki and H. Grotch, PRA 1995;
G.S. Adkins, S. Morrison, and J. Sapirstein, PRA, 2007.

Representation in a more compact form (A.S. Yelkhovsky, JETP , 1996):

∆E =
i

2πM

∫ ∞

−∞

dω 〈a|[~p− ~D(ω)]G(ω + Ea)[~p− ~D(ω)]|a〉 .

Numerical evaluations:
A.N. Artemyev, V.M. Shabaev, V.A. Yerokhin, PRA, 1995; JPB, 1995;
V.M. Shabaev et al., PRA, 1998; Phys. Scr., 1999;
G.S. Adkins, S. Morrison, and J. Sapirstein, PRA, 2007.

Extention to many-electron atoms: V.M. Shabaev, Sov. J. Nucl. Phys., 1988.

Radiative nuclear recoil to all orders in αZ: K. Pachucki, PRA, 1995.
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Fully relativistic theory of the nuclear recoil effect

Simple formulation of the QED theory of the recoil effect in atoms
(V.M. Shabaev, PRA, 1998)

In the Schrödinger representation and the Coulomb gauge, the
Hamiltonian of the whole system is

H =

∫

d~xψ†(~x)[~α · (−i~∇~x − e ~A(~x)) + βm]ψ(~x)

+
e2

8π

∫

d~xd~y
ρe(~x)ρe(~y)

|~x− ~y| +
1

2

∫

d~x[~E2
t (~x) + ~H2(~x)]

+
e|e|Z
4π

∫

d~x
ρe(~x)

|~x− ~Xn|
+

1

2M
[~Pn − |e|Z ~A( ~Xn)]

2

−~µ · ~H( ~Xn) ,

where the nucleus is considered as a nonrelativistic particle with mass
M . The term −~µ · ~H causes the hyperfine splitting of atomic levels and
will be omitted.
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Fully relativistic theory of the nuclear recoil effect

The total momentum of the system is given by

~P = ~Pn + ~Pe + ~Pph ,

where

~Pe =

∫

d~xψ†(~x)(−i~∇~x)ψ(~x)

is the electron-positron field momentum and

~Pph =

∫

d~x [~Et(~x)× ~H(~x)]

is the electromagnetic field momentum. In the center-of-mass frame:

~PΦ = (~Pn + ~Pe + ~Pph)Φ = 0 .
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Fully relativistic theory of the nuclear recoil effect

In the center-of-mass frame (~P = 0), using

~Pn = −~Pe − ~Pph = −
∫

d~xψ†(~x)(−i~∇~x)ψ(~x)−
∫

d~x [~Et(~x)× ~H(~x)]

and replacing ~Xn → 0, we get

H =

∫

d~xψ†(~x)[~α · (−i~∇~x − e ~A(~x)) + βm]ψ(~x)

+
e2

8π

∫

d~x d~y
ρe(~x)ρe(~y)

|~x− ~y| +
1

2

∫

d~x [~E2
t (~x) + ~H2(~x)]

+
e|e|Z
4π

∫

d~x
ρe(~x)

|~x| +
1

2M

[

−
∫

d~xψ†(~x)(−i~∇~x)ψ(~x)

−
∫

d~x [~Et(~x)× ~H(~x)]− |e|Z ~A(0)
]2

.
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Fully relativistic theory of the nuclear recoil effect

To zeroth order in α and to first order in m/M (but to all orders in αZ),
the relativistic nuclear recoil operator is given by

HM =
1

2M

∫

d~xψ†(~x)(−i~∇~x)ψ(~x)

∫

d~y ψ†(~y)(−i~∇~y)ψ(~y)

−eZ
M

∫

d~xψ†(~x)(−i~∇~x)ψ(~x) ~A(0) +
e2Z2

2M
~A2(0) .

To find the nuclear recoil effect for a state a, one should evaluate

∆Ea = 〈Φa|HM |Φa〉 .

The calculation can be performed by adding the Hamiltonian HM to
the standard QED Hamiltonian in the Furry picture. This results in
appearing new lines and vertices in the Feynman rules.
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Fully relativistic theory of the nuclear recoil effect

Relativistic nuclear recoil effect for a H-like atom

The Coulomb nuclear recoil contribution is defined by the first term

∆E(C)
a =

1

2M
〈Φa|

∫

d~xψ†(~x)(−i~∇~x)ψ(~x)

∫

d~y ψ†(~y)(−i~∇~y)ψ(~y)|Φa〉 .

The corresponsing Feynman diagram:

r
r

r
r

r

r
r

r
r

r

✉

✉
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Fully relativistic theory of the nuclear recoil effect

A simple evalution yields

∆E(C)
a =

1

M

i

2π

∫ ∞

−∞

dω
∑

n

〈a|~p|n〉〈n|~p|a〉
ω − εn(1− i0)

.

Using the identities

1

x± i0
= ±π

i
δ(x) + P

1

x
,

we get

∆E(C)
a =

1

2M
〈a|~p2|a〉 − 1

M

∑

εn<0

|〈a|~p|n〉|2 .
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Fully relativistic theory of the nuclear recoil effect

Alternative derivation of the Coulomb nuclear recoil contribution

We start with the nonrelativistic theory of the nuclear recoil effect for a
many-electron atom

∆Ea =
1

2M

〈

Φa

∣

∣

∣

(

∑

i

~pi

)2∣
∣

∣
Φa

〉

=
1

2M

〈

Φa

∣

∣

∣

∑

i

~p2i

∣

∣

∣
Φa

〉

+
1

2M

〈

Φa

∣

∣

∣

∑

i 6=j

(~pi · ~pj)
∣

∣

∣
Φa

〉

In the independent electron approximation, the wave function Φa is a
one-determinant wave function:

Φa(~x1, ..., ~xN) =
1√
N !

∑

P

(−1)PψPa1
(~x1) · · ·ψPaN

(~xN )
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Fully relativistic theory of the nuclear recoil effect

Let us consider an atom with one electron over closed shells. We are
interested in the nuclear recoil effect on the v → v′ transition energy:

∆Ev→v′ =
1

2M
〈v|~p2|v〉 − 1

2M
〈v′|~p2|v′〉

−
[ 1

M

∑

c

|〈v|~p|c〉|2 − 1

M

∑

c

|〈v′|~p|c〉|2
]

.

For instance, in case of a B-like atom: v = 2p3/2, v′ = 2p1/2, c = 1s, 2s,

∆Ev→v′ =
1

2M
〈2p3/2|~p2|2p3/2〉 −

1

2M
〈2p1/2|~p2|2p1/2〉

−
[ 1

M

∑

c=1s,2s

|〈2p3/2|~p|c〉|2 −
1

M

∑

c=1s,2s

|〈2p1/2|~p|c〉|2
]

.
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Fully relativistic theory of the nuclear recoil effect

Extension to the Dirac theory:

∆Ev→v′ =
1

2M
〈2p3/2|~p2|2p3/2〉 −

1

2M
〈2p1/2|~p2|2p1/2〉

−
[ 1

M

∑

c=1s,2s

|〈2p3/2|~p|c〉|2 −
1

M

∑

c=1s,2s

|〈2p1/2|~p|c〉|2
]

−
[ 1

M

∑

εn<−mc2

|〈2p3/2|~p|n〉|2 −
1

M

∑

εn<−mc2

|〈2p1/2|~p|n〉|2
]

.

The last term describes the interaction of the valence electron with the
negative-continuum Dirac electrons via coupling to the common
dynamics with the nucleus.
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Fully relativistic theory of the nuclear recoil effect

The one-transverse-photon nuclear recoil contribution is defined by the
second term

∆E(tr1)
a = −eZ

M
〈Φa|

∫

d~xψ†(~x)(−i~∇~x)ψ(~x) ~A(0)|Φa〉 .

The corresponsing Feynman diagrams:

✉

✉
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Fully relativistic theory of the nuclear recoil effect

The two-transverse-photon nuclear recoil contribution is defined by the
third term

∆E(tr2)
a =

e2Z2

2M
〈Φa| ~A2(0)|Φa〉 .

The corresponsing Feynman diagram:

✉
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Fully relativistic theory of the nuclear recoil effect

Evalution of the one- and two-transverse-photon recoil contributions
yields

∆E(tr1)
a = − 1

M

i

2π

∫ ∞

−∞

dω 〈a|[~pG(ω + εa) ~D(ω) + ~D(ω)G(ω + εa) ~p]|a〉 ,

∆E(tr2)
a =

1

M

i

2π

∫ ∞

−∞

dω 〈a| ~D(ω)G(ω + εa) ~D(ω)|a〉 ,

where G(ω) =
∑

n
|n〉〈n|

ω−εn(1−i0) is the electron Green function and

Dk(ω) = −4παZαiDik(ω).

The sum of all the contributions is given by

∆E(tot)
a =

1

M

i

2π

∫ ∞

−∞

dω 〈a|[~p− ~D(ω)]G(ω + εa)[~p− ~D(ω)]|a〉 .
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Fully relativistic theory of the nuclear recoil effect

Two-electron recoil contributions:

q q q q q q q q q qr r r r r

For a two-electron atom with the wave function

Φ(~x1, ~x2) =
1√
2

∑

P

(−1)PψPa(~x1)ψPb(~x2)

we get

∆E(int) =
1

M

∑

P

(−1)P 〈Pa|[~p− ~D(εPa − εa)]|a〉〈Pb|[~p− ~D(εPb − εb)]|b〉 .
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Finite nuclear size effect

The nuclear charge distribution is usually approximated by the
spherically-symmetric Fermi model:

ρ(r) =
N

1 + exp[(r − c)/a]
,

where the parameter a is generally fixed to be a = 2.3/(4ln3) fm and
the parameters N and c are determined using the given value of
R = 〈r2〉1/2 and the normalization condition:

∫

d~rρ(r) = 1. The
potential induced by the nuclear charge distribution ρ(r) is defined as

Vnuc(r) = 4παZ

∞
∫

0

dr′r2ρ(r′)
1

r>
,

where r> = max(r, r′). The isotope field shift is obtained by
calculations of the binding energies for the two isotopes and taking the
corresponding energy difference.
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Finite nuclear size effect

Finite nuclear size effect in H-like ions

In the range Z=1-100, with relative accuracy of ∼ 0.2%, (V.M. Shabaev,
J.Phys. B, 1993)

∆Ens =
(αZ)2

10n
[1 + (αZ)2fns(αZ)]

(

2
αZ

n

Reff

(~/mc)

)2γ

mc2 ,

where γ =
√

1− (αZ)2,

f1s(αZ) = 1.380− 0.162αZ + 1.612(αZ)2 ,

f2s(αZ) = 1.508 + 0.215αZ + 1.332(αZ)2 ,

and Reff is an effective nuclear radius defined by

Reff =
{5

3
〈r2〉

[

1− 3

4
(αZ)2

( 3

25

〈r4〉
〈r2〉2 − 1

7

)]}1/2

.
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Nuclear deformation effect

The nuclear deformation effect is evaluated by replacing the standard
Fermi model for the nuclear charge distrubution by (Yu.S. Kozhedub et al.,
PRA, 2008)

ρ(r) =
1

4π

∫

d~nρ(~r) ,

where ρ(~r) is the axially symmetric Fermi distribution:

ρ(~r) =
N

1 + exp[(r − r0(1 + β20Y20(θ) + β40Y40(θ))/a]

consistent with the normalization condition:
∫

d~rρ(~r) = 1.

The difference between the nuclear size effect obtained with the
deformed and spherically-symmetric Fermi models at the same rms
radius is ascribed to the nuclear deformation effect.
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Nuclear polarization effect

The interaction between the electron and the nucleons causes the
nucleus to make virtual transitions to excited states. This results in the
increase of the binding energy of the electron.

✂✁✂✁✂✁✂✁✂✁
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✄

✄

✄

✄

✄

✁

✁

✁

✁

�

�

�

�

�

✂

✂

✂

✂

n e n e

a

n 6= a

a

a

n 6= a

a

Evaluation: G. Plunien and G. Soff, PRA, 1995;
A.V. Nefiodov, L.N. Labzowsky, G. Plunien, and G. Soff, PLA, 1996.
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1s Lamb shift in H-like uranium, in eV

❄❄❅❅❘��✠❄❄

463.99(39) eV
❄

–132 279.92 198.54(19)† 266.45 –1.26(33)∗ 0.46 –0.20(10)
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❅
❅
❅❘

�
�
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❅
❅
❅❘

�
�

�✠
Nuclear

polarization
Finite

nuclear size
Point

nucleus

Beyond

ext. field
approx.

m

M

External
field

approx.

α α
2

Nuclear physicsDirac equation QED

Experiment: 460.2(4.6) eV
(A. Gumberidze, T. Stöhlker, D. Banas et al., PRL, 2005)

Test of QED: ∼ 2%

∗ V.A. Yerokhin, P. Indelicato, and V.M. Shabaev, PRL, 2006
† Y.S. Kozhedub, O.V. Andreev, V.M. Shabaev et al., PRA, 2008
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2p1/2-2s transition energy in Li-like uranium, in eV

❄
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280.71(10) eV

322.13(7)† –42.93 1.55(7)∗ –0.07 0.03(1)

Nuclear
polarization

Beyond

the Breit approx.
Breit approx.

Nuclear physicsQED

α
α
2

m

M

Experiment: 280.59(10) eV (J. Schweppe et al., PRL, 1991)
280.52(10) eV (C. Brandau et al., PRL, 2003)

280.645(15) eV (P. Beiersdorfer et al., PRL, 2005)

Test of QED: ∼ 0.2%
∗ V.A. Yerokhin, P. Indelicato, and V.M. Shabaev, PRL, 2006
† Y.S. Kozhedub, O.V. Andreev, V.M. Shabaev et al., PRA, 2008
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Isotope shift in Li-like neodymium

Individual contributions to the isotope shifts for the 2p1/2 − 2s and

2p3/2 − 2s transitions in Li-like neodymium, 150,142Nd57+, (in meV) with
150,142δ〈r2〉 = 1.36 fm2 (N.A. Zubova et al., PRA, 2014).

Contribution 2p1/2 − 2s 2p3/2 − 2s

Field shift: non-QED −42.57 −44.05

Mass shift: non-QED 1.30 1.50

Field shift: QED 0.22 0.24

Mass shift: QED 0.33 0.30

Nuclear polarization 0.36 0.33

Nuclear deformation 0.27 0.28

Total theory −40.1(2) −41.4(2)

Experiment (C. Brandau et al., PRL, 2008) −40.2(3)(6) −42.3(12)(20)
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Nuclear recoil effect on the bound-electron g factor

The g factor of an atom can be defined as a proportionality coefficient
in the Zeeman splitting of atomic levels:

∆E = g (|e|~/2me)BMz .

Formula for the nuclear recoil effect on the g-factor of a H-like atom to
first order in m/M and to all orders in αZ (V.M. Shabaev, PRA, 2001):

∆gnuc.rec. =
1

µ0ma

i

2πM

∫ ∞

−∞

dω

[

∂

∂B
〈a|[~p− ~D(ω) + e ~Acl]

×G(ω + εa)[~p− ~D(ω) + e ~Acl]|a〉
]

B=0

,

where it is implied that all quantities are calculated in the presence of
the magnetic field B.
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Nuclear recoil effect on the bound-electron g factor

For the practical calculations, the nuclear recoil effect can be
represented by a sum of a lower-order term and a higher-order term,

∆gnuc.rec. = ∆g
(L)
nuc.rec. +∆g

(H)
nuc.rec., where

∆g(L)nuc.rec. =
1

µ0ma

1

2M

[

∂

∂B
〈a|
(

~p2 − 2~p · ~D(0)
)

|a〉
]

B=0

− 1

ma

m

M
〈a|
(

[~r × ~p]z −
αZ

2r
[~r × ~α]z

)

|a〉B=0 ,

∆g(H)
nuc.rec. =

1

µ0ma

i

2πM

∫ ∞

−∞

dω

[

∂

∂B
〈a|
(

~D(ω)− [~p, V ]

ω + i0

)

×G(ω + εa)
(

~D(ω) +
[~p, V ]

ω + i0

)

|a〉
]

B=0

.

Numerical evaluation: V.M. Shabaev and V.A. Yerokhin, PRL, 2002.
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Nuclear size effect on the g factor of H-like ions

Finite nuclear size correction for an ns state to the lowest order in αZ
(S.G. Karshenboim, PLA, 2000):

∆gnuc.size =
8

3n3
(αZ)4m2〈r2〉nuc .

To two lowest orders in αZ (D.A. Glazov and V.M. Shabaev, PLA, 2002):

∆gnuc.size =
8

3n3
(αZ)4m2〈r2〉nuc

[

1 + (αZ)2

(

1

4
+

12n2 − n− 9

4n2(n+ 1)

+2ψ(3)− ψ(2 + n)− 〈r2 ln(2αZmr/n)〉nuc
〈r2〉nuc

)]

.

where ψ(x) = d
dx ln Γ(x).
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Nuclear polarization effect on the g factor of H-like ions

The nuclear polarization corrections to the g factor of a H-like ion are
defined by the Feynman diagrams:

Evaluations: A.V. Nefiodov et al., PLB, 2003; A.V. Volotka and G. Plunien, PRL,
2014.

Nuclear magnetic susceptibility correction to the bound-electron g
factor: U.D. Jentschura, A. Czarnecki, K. Pachucki, and V.A. Yerokhin, IJMS, 2006.
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g factor of H-like ions

g factor of 28Si13+

Dirac value (point nucleus) 1.993 023 571 6

Free QED 0.002 319 304 4

Binding QED [1] 0.000 005 855 8(17)

Recoil [2] 0.000 000 205 8(1)

Nuclear size 0.000 000 020 5

Total theory 1.995 348 958 0(17)

Experiment [3] 1.995 348 959 10(7)(7)(80)

[1] K. Pachucki et al., PRA, 2005; V.A. Yerokhin et al., PRL, 2002.
[2] V.M. Shabaev and V.A. Yerokhin, PRL, 2002; K. Pachucki, PRA 2008.
[3] S. Sturm et al., PRL, 2011; PRA, 2013.

These experiment and theory provide to date the most accurate test of
bound-state QED with middle-Z ions.
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g factor of Li-like ions

g factor of 28Si11+

Dirac value (point nucleus) 1.998 254 751

One-electron QED 0.002320527(1)

Screened QED -0.000000236(5)

Interelectronic int. 0.000 314809(6)

Nuclear recoil 0.000 000 039(1)

Nuclear size 0.000 000 003

Total theory [1] 2.000 889 892(8)

Experiment [2] 2.000 889 890(2)

[1] A.V. Volotka et al., PRL, 2014.
[2] A. Wagner et al., PRL, 2013.

These experiment and theory provide the most stringent test of
many-electron bound-state QED in a magnetic field.
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Isotope shift of the g factor of H-like ions

Isotope shift of the g factor of H-like calcium: 40Ca19+ − 48Ca19+

Nuclear recoil: non-QED ∼ m/M 0.000000048657

Nuclear recoil: non-QED ∼ (m/M)2 −0.000000000026(2)

Nuclear recoil: QED ∼ m/M 0.000000000904

Nuclear recoil: QED ∼ α(m/M) −0.000000000038(3)

Finite nuclear size 0.000000000032(75)

Total theory 0.000000049529(75)

The current theoretical uncertainty is about 8% of the QED nuclear
recoil contribution.
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Isotope shift of the g factor of Li-like ions

Calculations for low-Z Li-like ions (Z ≤ 12) including the lowest-order
relativistic and radiative corrections: Zong-Chao Yan, PRL, 2001; JPB, 2002.

New calculations

Isotope shift of the g-factor of Li-like calcium: 40Ca17+ − 48Ca17+

Nuclear recoil: one-electron non-QED 0.000000012240(1)

Nuclear recoil: interelectronic int. −0.000000002051(22)

Nuclear recoil: QED ∼ m/M 0.000000000123(12)

Nuclear recoil: QED ∼ α(m/M) −0.000000000009(1)

Finite nuclear size 0.000000000004(9)

Total theory 0.000000010305(27)

This study will provide the first test of QED beyond the Furry picture
with highly charged ions.
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Conclusion

• The QED calculations of the isotope shifts in highly charged ions are required by
the current and near future experiments.

• The measurements and the calculations of the isotope shifts in highly charged
ions provide an effective tool for determination of the nuclear charge radii.

• The study of the isotope shifts with highly charged ions can give a unique access
to tests of QED at strong coupling regime beyond the Furry picture.
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