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1. Motivation

We wish to study the analogg1 between the winding
number susceptibility superfluid system
and topological susceptibility in @ED.

The Wlndlng number is defined as
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Manifold  Ms assumed to have at least one non-
contractable path surh that there is a
nontrivial mapping | 1[U(1)] b&ween the Nambu
Goldstone phase wand path 4ulM

We want to argue that 1hAY eibit similar
structures, including the generation of the
contact term which is oriainated from IR phvsics.



® The basic reason for a aeep relation between bt
and !'Q" is that there is a direct relation between

the superfluid density dnd winding number
correlation function 1| “" IPo"ock &Ceperley, 1987#$
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m the phase transition at T #puperfluidity can
be studied by analyzing winding number andq 2"

configurations which trigger the phase transition.

m Similar relation ( dexstically changes at ) is Te
known to occur in QCD. In fact, | have been
advocating the idea that these changes are due to
modification of relevant dof, similar to BKT
transition (instantons vs constituents, KvBLL,
Inst. quarks, inst. dyons, fractional monopoles)



2. A short detour to superfluidity

® The starting point is Gross- Pitaevskii description
when the superfluidity is described in terms of a
single complex field with non vanishing
expectation value while its phase describes the
Goldstone boson
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® Conventional quasi-particles are massless
phonons I(k)! k and massive rotons
" 2
(k) ! 1+ S
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= The rotons play a key role in formulation of the i
Landau criterion for superfluidity l+V ak> 0
when the rotons cannot be excited.



It has been known for sometime that this Landau
criterion cannot serve as a criterion for
superfluidity due to a number of reasons:

1. There is numerous experiments which show that
the phonon- roton spectrum exists even for

normal liquids at T >Bxamples include: non-
superfluid helium, neon, oxygen and many others;

2. Critical velocity calculations (based on rotonOs
spectrum) is order of magnitude higher than
observed values.

Novel criteria for superfluidity is based on
topological arguments IPo"ock &Ceperley, 1987;

Svistunov, Babaev, Prokof%ev, 90-s#.



The idea Is that the winding number Is cdnserved
due to the topological reasons.

' may change only as a result of tunnelling
transitions (which is negligible in non-relativistic
systems) or interaction with fluctuating vortices

Thermally excited vortices may change becabse
Inside the vortex core ng, &M it can unwind

itself. A percolated vortex network at mMay T,
emerge and remove the boundary. This is
precisely the point where phase transition happens.

The superfluidity itself is a simple phenomenon In
this framework. A hard problem is to understand:
how the superfluidity is destroyed by percolated

network of vortices. It is formulated in terms of &



3. Properties of ideal (structureless
and static) topological vortices
® The winding number is defined as follows
2
Wi = 5 dSTk(#), "«(®) = S %g () = Hie B%&(H) =21 (X1 ).

® The physical meaning of !'«RX) = #jk $iG @ensity
of circulation per unit area along the vortex of
arbitrary shape, while giet)=";#06t)= my, )
the velocity field.

® For closed vortices the circulation satisfies the

conservation law, !k" k(%) Snhile for open
vortices one has L") =2% B(#! #)! B#! #)
= The physical meaning of 1 ,", (#) isthat the

winding number does not depend on position of
the cut of this network of vortices.



It IS very instructive to present the analogy with
magnetism when our field g ehaves in all
respects as the magnetic field Bift)

Indeed, the magnetic field satisfies the equations

1iBi =0, ik 'iBj (%) = HoJk(¥#), !«kJk(#)=0.

It should be compared with our case

Ligi =0, "ijk!ig(#) = S(#), '«&#) =0,

where the circulation field pldy&dhe role of
the current distribution InJafkhotted,

twisted, crumpled, wrinkled fluctuated spaghett
network made of closed loops of chiral vortices.



#= One can make one more step in this analogy and
Introduce new vector (axial) potential as aft)

lik "ia; (#) | ge(#) analogousto B = % K

m For a given circulation lqu¥e) can compute the
vector potential aafd the velocity o ()
1:3 TR GRS | o e
! =1 | = Sy! =i :
P e 4 e i) o deux!l = !dekN"xll.

®m The vortex-vortex interaction can be also
represented in local form using the auxiliary
fleld aj ot )
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Our vortices are complicated fluctuating objects.
A simplified description in terms of specific (fixed)
sources IS not quite appropriate description for
the questions we want to address.

ldeally, we would like to sum over all possible
vortex configurations (including interactions)

and represent the corresponding physics in terms
of some auxiliary low energy effective fields.

Before we proceed with computations we want to
demonstrate (as a test) how this technique works
in a simplified, the so-called Odeformed QCDO
model, where all results are known.

We shall see that an every single element in
Odeformed QCDO model has its counterpart in
superfluid system, including POt Sailuiijicn



4. Strategy. The Odeformed QCDO model
In terms of auxiliary topological fields

= We wish to compute 1g# terms of the auxiliary
topological fields ( dual variables ) rather than In
terms of the original variables (monopoles). We
want to develop an appropriate technique which
can be used for superfluid systems and
corresponding computations of il

@ This is a simplified version of QCD which, on one
hand, is a weakly coupled gauge theory where
computations can be performed in theoretically
controllable manner.

® On other hand, the corresponding deformation
preserves all the relevant elements of strongly
coupled QCD such as confinement, degeneracy of
topological sectors, nontrivial ~ dependence, etc



There Is no phase transition in passage from weakly
coupled Odeformed QCDO to strongly coupled real
QCD. Therefore, there is a hope to understand some
deep features of strongly coupled QCD.

Different aspects of the model have been studied by
many people: Shifman, Yaffe, Unsal, Poppitz, Sulejmanpasic, AZ+ many others.

The ground state in Odeformed QCDO s saturated by
the fractionally charged weakly interacting pseudo-
particles (monopoles) which live in 3D. They are
analogous to Oinstanton-dyonsO to be discussed on
Wednesday ( Shuryak, Larsen, Martemyanov, ligenfritz, Lopez-Ruiz...)

Precisely the 3D feature of this model offers a

new perspective (in terms of the dual auxiliary
fields) on conceptual similarities between
Odeformed QCDO model and superfluid systems




5. Deformed QCD. Basics.

® An extra term is put into the Lagrangian in order

to prevent the center symmetry breaking
S d*x : 0 F (x) i 4 i -ur%
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m Parameter OLOis the length of the compactified
dimension which is assumed to be small, <AZ>
plays the role of the Higgs field in the model.

® the Infrared description of the theory Is a dilute
gas of N types of monopoles, characterized by
their magnetic charges, which are proportional
to the roots R



® The dual sine-Gordon Lagrangian has the form
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® The dimensional parameter which governs the
dynamics of the system is the Debye
correlation length of the monopole's gas
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m The average number of monopoles in a ODebye
volumeO Is parametrically large which justifies
the semiclassical approximation

N ! mi3= = %—" 1 where fugacity! ! & ¥9° " 1



6. Topological susceptibility

» A convenient way to explain the nature of new type
of vacuum energy Is to study the topological

susceptibility  !itis &e key element in &e resolu’'on of &e st
ca'ed U!1# problem in QCD, Wi(en, Veneziano, 1979 #.

" !2Evac y
XYM = /d4$!61($)761(0) # 0 T 2( ) =HyMm

To avoid con)sion: *Is is &e Wick%s T-product, not Dyson%s 1

= ! ym does not vanish, though ax) ! ! Kt EAs
“wrong signO, see below. It cannot be related to

any physical propagating degrees of freedom.
Furthermore, it has a pole in momentum space

. Ky K
: 4., ik Jafld
Ly / d*xe"" (Kyu(x),K,(0)) ~ =3

» Thereisa massless pole, butthere are no any
physical massless  states in the system.
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conventional physical degrees of freedom always
contribute with sign (-) while one needs sign (+) to
satisfy WI and resolve we U(1) problem

& 10|g[n"!n|q|0"
# dispersive $ Illlmo K2 H m2

n

<0,

Witten simply postulated this term, while Veneziano
assumed the unphysical field, the so-called the
OVeneziano ghostO to saturate OwrongO (+) sign.

! hon'! dispersive = d*x lg(x), q(0)" = N—lEvacl

In Odeformed QCDO this contact non- dlsperswe term
with OwrongO sign (+) can be explicitly computed. It
IS originated from the tunnelings between the

degenerate topological sectors of the theory.

lym =  d*x<q(x),g(0)>= T d3x [#(x)] .




® This singular behaviour is a generic feature which
IS shared by many other models, including exactly
solvable 2D Schwinger model and 4D QCD when it
IS saturated by the Veneziano ghost.

® This singular behaviour is also measured in the
QCD lattice simulations at strong coupling, see
plot below.

®m The !(x)should be understood as total divergence
related to the infrared (IR) physics, determined by
the boundary conditions

i : T 41 -
| ! g Sx = Sx # & = !
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The topological susceptibilityr)  as a function of r. Wrong sigr
' 1s well established phenomenon; it has been tested on the |
(plot above is from C. Bernard et al, LATTICE 2007). THis=0)
contribution is not related to any physical degrees of freedom, ¢
can be interpreted as a contact term.



/. Topological action for deformed OQCD

= We wish to derive the (dual) topological action for
Odeformed QCDO in terms of the (dual) auxiliary
topological fields. We will use exactly the same
technique for superfluid systems (where instead
of monopoles we have fluctuating vortices )

Construction:

® We reproduce our previous results on topological
susceptibility using auxiliary topological fields

= a). we introduce abelian field frep # N, APIEGIE

1

®= D). topological density is Ax) = 15 ATNL

 FH = R (x)

® C). transformation properties are:

ik £, (x) transforms like g(x) (i.einvariant)

” nijk f ik (x)- transforms like Ki(X)-
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d). insert the delta function into the path
Integral with field as(a)Lagrange multiplier

e). treat  b(x),f; (felds as external slow varying
background fields

f). the topological action Seop[ fik (XB BOAYCED:

S el (e

£ e , B (X) $ #0(x),

Next steps : we will demonstrate that ISt @xactly
reproduced by using Stopl fik (X), KIQb: the
topological fields in this model can be identified

with auxiliary Veneziano ghost (postulated in 1980

to saturate the topological susceptibility e Y M




8. Computation of ' YWSING Stop [ fik (x), b(x)]

® We want to compute the susceptibility by

integrating out auxiliary b(x),fij (x) fields
SR A e G2 ()
'a(x). 90)" = = T @NL )’
iE iy Ay } i
S[la] = NEETE d3x a(x)# *# 2a(x)

®m All Gaussian integrals can be explicitly executed.
4-derivatives action Is the manifestation of the
Owrong signO for the contact term

$

19(x),9(0)" = -~ 59%B(x)

m Itprecisely reproduces our original formula
which was derived by explicit summation over all
possible monopoles  with different orientations.




One can also compute a gauge variant correlation
function |

lim e 1" ja(x)," ja(0)# $ #

NiS object Is very similar to the Veneziano ghost.
ne unphysical pole has precisely the same nature.

The transformation properties argtxe same
as in the Veneziano construction Ki(x)!" ;a(x)
We identify our topological a(xf e

constructed for the deformed QCD with the

effective Veneziano _ghost. This identification
uncovers the nature of the Veneziano ghost  as an
effective  topological  non-propagating field

Formulation of this phenomenon in terms of the
topological Sy [f ik (x), X3 Mmatter of taste: a(x), b(x)
flelds are not dynamical. Still they saturate Ly M



One can generalize this construction to include
massless quarks. The result is
" 5 e—m!/r]

(00, d0)keo = 1 (860" m2 S

The celebrated U(1pyoblem is resolved In this
framework exclusively as a result of dynamics of
the topological a(x), liEedps.

The WI are satisfied as a result of exact
cancellation between the non-dispersive
topological contribution and physical field: !

Xeop(mg =0)=  d*z < ¢(x),¢(0) >qcp=0

The generation of the ~ mass is a result of
mixture of the Owould beO Goldstone field with
non-propagating long ranged topoloqical field




9. Auxiliary topological fields for

superfluid system
= We want to repeat our previous construction
(tested in Odeformed QCDO model) by replacing the
monopoles classified by topological charge Q to
the vortices classified by winding number 1.

® Instead of summation over all monopoleOs colour
orientations and their positions we have to sum
over all possible vortices and their shapes.

® Technically it is done by introducing a density

circulation  j#6r)a generic configuration of n(")
vortices and insertion of the I fiwix)lon
BEsi= 2 Oz e tx Vix )
| b e 2 | i, s
IJk(X)| ijk #|gJ(X) :b" B T 1 .

D[p]e o Px)alclIt - tik "igj (x)
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In this formula hiéxgcting as the Lagrange
multiplier, while I (X) = “iik # 0 (x)=1!" 2ak (X)
IS treated as slow-varying external auxiliary field.

In the ideal case of infinitely thin and static
vortices (keeping the quadratic terms in the
Hamiltonian only) the partition function assumes
the form

Z1  D[bD[a]D[l J¢ | Helb! I+ Hin lalt Hep bal
|
il
"Hip[b, & =" oH d®xby (x)# 2ay (x),
| M

% dxan()$2a(x),
W
3 0
R 1= s Md3x$&! )" b(x) 2.

Hine [a] = *



In this formula | (X9)he Goldstone field,

while (& (x), b (Xare the auxiliary topological

fields which play the same role as (a(x)jnb(x))
our previous studies of the Odeformed QCDO

One can shift the variables to bring the
hamiltonian to the diagonal form to complete the

computations of the winding susceptibility 14
L C B 7 ) e
2|| o3y 2" 4 mT #k$(X)
' # 2 i 792
liefa ] o mTp ] 2a (X)
AR Wy 2t
B 2 oo . ;
n ) ob b 0ok
d3 S | n _a X | 2a X
M 4 2mT k1) T «(X) K (X)



10. Winding number susceptibility L

® Itis convenient to represent aslg'combination
of two terms (Goldstone field contribution  and | (1)
the auxiliary topologlcal field contribution ) | (aL)
L N LD VY (1) + I(ak)
k! 0

1 (1) = !"k' (X), "/k' (X#)
mT E ﬁza#(x) §2a’(x") ,

| (ax) = :
( k) Ne 2% 2%
® The first term (due to the Goldstone fieldx)
IS easy to compute:
Bl R= ol G Al )i= ., e

Ns



# Computation of another term, related to the
auxiliary topological fields (& (x),IEX))
less trivial task because it involves the operator
with 4 derivatives

Htot [a] 2 - mT t d3X aL (X) $I|| 2|n 2 | I2||| 2(ya;( (X)

T 2Ng 2! 2!

® The integral is gaussian and can be exactly
executed:

mT 27 D[a]e " 2al (x)," 2al (x')
| (ak) = | # R
| 3! mT CeR Sy 0 (Bzezio) > & $ne
—= s #(X X). oy 21 |X| X'l ; ! ( ) mT 2



® Itis instructive to compute the correlation
function  !aj(x), a (xitself for better
understanding of the topological auxiliary field:

: £ mT 2 a; X a/(X/)
v s S

® The result for this (gauge- dependent) function Is

] Ty 7 a ! - d 7
S8 mT s D[a!_:Le HT[ ]ai! (X)’aj! (X!) ek ¢ mT b d3p ip&dx" x’) ; 1 I 1
Vi (ax) = ! ; # T al T 3€ 2 11 2 oo
2In S D[a']e Ty - Ng (2' ) p +! ! p

® It should be compared with QCD computations
(when the Veneziano ghost manifests itself as the

IR topologically protected pole at p° =7
B Dl S el 8l0) . Ppl sy 1 1 56
.a(x),a(O) }: ' D[a!]e" Sqco [a'] ) (2! )36 m—lz. 4 p2 + m,Z! 3 ?



Few importnat comments:
= 1. Our approximation is justified for heavy static

vortices. It is obviously not the case when the
temperature approaches the critical value T E e
when the vortices become light and fat. They also
strongly fluctuate.

m 2. Our assumption is justified a posteriori: static
configurations in form of (a (x)satxate . || 2"
The interactions do not drastically change the
structure of the !This specific correlation
function is Ot opologically rigid O with respect to
the neglected interactions and time dependence.

®= 3.This argument Is supported by similar analysis
for 10%1n QCD when Ostatic deformed QCDO and
the 4D dynamical strongly coupled QCD lead to
similar structures for this correlation function.



4. The emergent structure Is identically the same
as for the Odeformed QCDO model with the same 4-
derivative operator generating the contact term;

5. mass gap is generated exactly in the same  way as
In the resolution of the U(1) problem in QCD:

mass gap emerges as a result of mixture of the
topological fields with the Goldstone field;

6. The corresponding gapped quasiparticle (we
call it OvortonO) cannot be identified with roton
because the gap vanishes at T_c.

7. The OvortonsO mostly contribute to . THe"
vortonsOs contribution to other correlation

functions is strongly suppressed, similar to

Veneziano ghost behaviour: it contributesto . 1Q?"



11. QCD vs Superfluidity: V2" ]2

® We observed a number of formal similarities
between computations of &4

® In both cases the effective description is
formulated in terms of the dual auxiliary non-
propagating fields (ai (x), b(x)puperfluid
systems, and (a(x), b(x)in Odeformed QCDO model;

m These fields effective describe the real superfluid
vortices and Euclidean monopoles correspondingly

® In both cases the contact terms emerge as a result
of 4-derivative operator in effective action. It is
also a source of generating the mass gap in the
systems as a result of mixture of the Goldstone
fields with dual topological auxiliary fields.



# These formal similarities should not hide the
fundamental difference between QCD and
superfluid systems:

® The monopoles are the pseudo-particles
describing the tunnelling transitions between
different topological sectors. They live In
Euclidean space . The vortices live In real
Minkowski space-time and observed in real
experiments; pseudo-particles can be studied in
the lattice MC simulations

® However, there iIs a common denominator
between the two systems: In both cases there Is
a (hidden) long range order expressed In terms
of non-physical IR pole  at p® = 0On gauge
dependent correlation functions. This pole,
nevertheless generates physical contact terms.




12. Conclusion

The basic point Is that two correlation functions
In two different systems exhibit analogous
structures and amazing conceptual similarities
between QCD and superfluidity:

12|n Z 12ln Z
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The phase transition in superfluid systems is
known to occur as a result of drastic changes of
the percolated network of vortices

If we assume that the analogy between the two
systems is sufficiently deep, we may ask the
following question:

what kind of objects play the role of superfluid
vortices in QCD responsible for the transition?



In principle this question can be numerically

studied by changing the size OLO of the system in
Odeformed QCDO model when monopoles should
slowly transform into_some more complicated

structure (center vortices . domain wallsg?)

While description of these two systems is very

different in terms of the original objects

(monopoles, vortices), the dual description __ of 'Q*"
versus !l “'in terms of the auxiliary topological
non-propagating fields is very much the same

[a(x), b(x)]! Odeformed QCDO vsa[(x), b(x)]! superBuid system

® Our hope is that the observed similarities (in

dual terms) may generate new ideas benefitting
both fields, as it previously happened in history
of physics a numerous number of times.



