
Ariel Zhitnitsky!
!
!
!

University !
 of British Columbia, 
Vancouver, Canada

Gauge topology: from lattice to colliders        ECT*, Trento, November 7-11, 2016

 The QCD vacuum as a superßuid system ( arXiv:1609.08619 ).         



1. Motivation

We wish to study the analogy between the winding 
number susceptibility        in a superfluid system 
and topological susceptibility         in QCD. 

The winding number is defined as  

!

Manifold        is assumed to have at least one non-
contractable path    such that there is a 
nontrivial mapping                      between the Nambu 
Goldstone phase      and path  

We want to argue that         and        exhibit similar 
structures, including the generation of the 
contact term which is  originated from IR physics.  

! I 2"
!Q2"

!I !
!

M
d3x !" ", ! =

#
nS exp(i" )

M
�
! 1[U(1)] = Z

! ! ! M

! I 2" !Q2"



The basic reason for a deep relation between         
and         is that there is a direct relation between 
the superfluid density          and winding number 
correlation function        !Po"ock &Ceperley, 1987#$

!

the phase transition at              in superfluidity can 
be studied by analyzing winding number        and 
configurations which trigger the phase transition.  

Similar relation (       drastically changes at     ) is 
known to occur in QCD. In fact, I have been 
advocating the idea that these changes are due to 
modification of relevant dof, similar to BKT 
transition (instantons vs constituents, KvBLL, 
inst. quarks, inst. dyons, fractional monopoles)
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2. A short detour to superfluidity 
The starting point is Gross- Pitaevskii description 
when the superfluidity is described in terms of a 
single complex field with non vanishing 
expectation value while its phase describes the 
Goldstone boson  

!

Conventional quasi-particles are massless 
phonons                    and massive rotons 

!

The rotons play a key role in formulation of the 
Landau criterion  for superfluidity                         
when the rotons cannot be excited. 
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It has been known for sometime  that this Landau 
criterion cannot serve as a criterion for 
superfluidity due to a number of reasons:  

1.  There is numerous experiments which show that 
the phonon- roton spectrum  exists even for 
normal liquids at            . Examples include: non-
superfluid helium, neon, oxygen and many others; 

2. Critical velocity calculations (based on rotonÕs 
spectrum) is order of magnitude higher than 
observed values.   

Novel criteria for superfluidity is based on 
topological arguments !Po"ock &Ceperley, 1987; 

Svistunov, Babaev, Prokof%ev, 90-s#. 
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The idea is that the winding number     is conserved 
due to the topological reasons.   

  may change only as a result of tunnelling 
transitions (which is negligible in non-relativistic 
systems) or interaction with fluctuating vortices  

Thermally excited vortices may change    because       
inside the vortex core           , and it can unwind 
itself.  A percolated vortex network at                may 
emerge and remove    to the boundary. This is 
precisely the point where phase transition happens.  

The superfluidity itself is a simple phenomenon in 
this framework. A hard problem is to understand: 
how the superfluidity is destroyed by percolated 
network of vortices. It is formulated in terms of            
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3. Properties of ideal (structureless  
and static)  topological vortices 

The winding number is defined as follows 

!

The physical meaning of                          is density 
of circulation per unit area along the vortex of 
arbitrary shape, while                                       is 
the velocity field.  

For closed vortices the circulation satisfies the 
conservation law,                   , while for open 
vortices one has  

The physical meaning of                     is that the 
winding number does not depend on position of 
the cut of this network of vortices.  
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It is very instructive to present the analogy with 
magnetism when our field             behaves in all 
respects as the magnetic field           . 

Indeed, the magnetic field satisfies the equations 

!

It should be compared with  our case 

!

where the circulation field         plays the role of 
the current distribution           in a knotted, 
twisted, crumpled, wrinkled fluctuated spaghetti 
network  made of closed loops of chiral vortices.       
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One can make one more step in this analogy and 
introduce new vector (axial) potential          as 

!

For a given circulation          one can compute the 
vector potential         and the velocity   

!

The vortex-vortex interaction can be also 
represented in local form  using the auxiliary 
field 
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Our vortices are complicated fluctuating objects. 
A simplified description in terms of specific (fixed) 
sources is not quite appropriate description for 
the questions we want to address. 

Ideally, we would like to sum over all possible 
vortex configurations (including interactions) 
and represent the corresponding physics in terms 
of some auxiliary  low energy effective fields.  

Before we proceed with computations we want to 
demonstrate (as a test) how this technique works 
in a simplified, the so-called Òdeformed QCDÓ 
model,  where all results are known. 

 We shall see that an every single element in 
Òdeformed QCDÓ model has its counterpart in 
superfluid system, including             and         .!Q2" ! I 2"



4. Strategy.  The Òdeformed QCDÓ model 
in terms of auxiliary topological fields   
We wish to compute        in terms of the auxiliary 
topological fields ( dual variables ) rather than in 
terms of the original variables (monopoles).   We 
want  to develop an appropriate technique which 
can be used for   superfluid systems and 
corresponding computations of        .   

This is a simplified  version of QCD which, on one 
hand, is  a weakly coupled gauge theory where   
computations can be performed in theoretically 
controllable manner. 

On other hand, the corresponding  deformation  
preserves all the relevant elements of strongly 
coupled QCD such as confinement, degeneracy of 
topological sectors, nontrivial      dependence, etc!
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There is no phase transition in passage from weakly 
coupled Òdeformed QCDÓ to strongly coupled real 
QCD. Therefore, there is a hope to understand some 
deep features of strongly coupled QCD. 

Different aspects of the model have  been studied by 
many people: Shifman, Yaffe, Unsal, Poppitz, Sulejmanpasic, AZ+ many others.!

The ground state in Òdeformed QCDÓ  is saturated by 
the fractionally charged weakly interacting pseudo-
particles (monopoles) which live in 3D. They are 
analogous to Òinstanton-dyonsÓ to be discussed on 
wednesday ( Shuryak, Larsen, Martemyanov, Ilgenfritz, Lopez-Ruiz…) 

Precisely  the 3D feature of this model  offers a 
new  perspective (in terms of the dual auxiliary  
fields) on conceptual similarities  between  
Òdeformed QCDÓ  model and superfluid systems . 



An extra term is put into the Lagrangian in order 
to prevent the center symmetry breaking  

!

!

Parameter ÒLÓis the length of the compactified 
dimension which is assumed to be small,         
plays the role of the Higgs field in the model.  

the infrared description of the theory is a dilute 
gas of N types of monopoles, characterized by 
their magnetic charges, which are proportional 
to the   roots 

5. Deformed QCD. Basics. 
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II. DEFORMED QCD

Here we overview the Òcenter-stablizedÓ deformed Yang-Mills developed in [12, 13]. In the deformed theory an
extra term is put into the Lagrangian in order to prevent the center symmetry breaking that characterizes the QCD
phase transition between ÒconÞnedÓ hadronic matter and ÒdeconÞnedÓ quark-gluon plasma. The nature of the gap in
this model is reviewed in sectionII A , while in section II B we review the computation of the non-dispersive contact
term in topological susceptibility [23]. This term will be our starting point in construction of the corresponding Chern
Simons Lagrangian in sectionIII .

A. The model

We start with pure Yang-Mills (gluodynamics) with gauge group SU(N ) on the manifold R3 ! S1 with the standard
action
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Parameter L here is the length of the compactiÞed dimension which is assumed to be small. The coe# cients of
the polynomial P [" (x)] can be suitably chosen such that the deformation potential (2) forces unbroken symmetry
at any compactiÞcation scales. At small compactiÞcationL the gauge coupling is small so that the semiclassical
computations are under complete theoretical control [12, 13].

As described in [12, 13], the proper infrared description of the theory is a dilute gas ofN types of monopoles,
characterized by their magnetic charges, which are proportional to the simple roots and a# ne root �a # ! a! of the
Lie algebra for the gauge groupU(1)N . For a fundamental monopole with magnetic charge�a # ! a! , the topological
charge is given by
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with ÷F µ! " ⇥µ !"# F"# .
The system of interacting monopoles, including⌅ parameter, can be represented in the dual sine-Gordon form as

follows [12, 13, 23],
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where⇤ is magnetic monopole fugacity which can be explicitly computed in this model using conventional semiclassical
approximation. The ⌅ parameter enters the e$ective Lagrangian (7) as ⌅/N which is the direct consequence of the
fractional topological charges of the monopoles (4). Nevertheless, the theory is still 2⇧ periodic. This 2⇧ periodicity of
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The dual sine-Gordon Lagrangian has the form   

!

The dimensional parameter which governs the 
dynamics  of the system is the Debye   
correlation length of the monopole's gas 

!

The average number of monopoles in a ÒDebye 
volumeÓ is parametrically large which justifies 
the semiclassical approximation
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the theory is restored not due to the 2! periodicity of Lagrangian (7). Rather, it is restored as a result of summation
over all branches of the theory when the levels cross at" = ! (mod 2! ) and one branch replaces another and becomes
the lowest energy state as discussed in [23].

Finally, the dimensional parameter which governs the dynamics of the problem is the Debye correlation length of
the monopoleÕs gas,

m2
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. (8)

The average number of monopoles in a ÒDebye volumeÓ is given by

N ! m! 3
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$3 1
%

L 3#
" 1, (9)

The last inequality holds since the monopole fugacity is exponentially suppressed,# # e! 1/g 2
, and in fact we can view

(9) as a constraint on the validity of the approximation where semiclassical approximation is justiÞed.

B. Topological susceptibility

The topological susceptibility $ which plays a crucial role in resolution of theU(1)A problem [24Ð29] and is deÞned
as follows1
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where " is the " parameter which enters the Lagrangian (6) along with topological density operator q(x) and Evac (" )
is the vacuum energy density determined by (7).

It is important that the topological susceptibility $ does not vanish in spite of the fact that q = %µ K µ is total
divergence. Furthermore, any physical state gives a negative contribution to this diagonal correlation function
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A convenient  way to explain the nature of new type 
of vacuum energy is  to study the topological 
susceptibility  ! it is &e key element in &e resolu'on of &e so-

ca"ed U!1# problem in QCD, Wi(en, Veneziano, 1979 #. 

!

        does not vanish, though                       . It has 
``wrong signÓ, see below.  It cannot be related to 
any physical propagating degrees of freedom. 
Furthermore, it has a pole in momentum space 

!

There is a massless  pole, but there are no  any 
physical massless  states in the system. 

6.  Topological susceptibility
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conventional physical degrees of freedom always 
contribute with sign (-) while one needs sign (+) to 
satisfy WI and resolve              the U(1) problem   

!

Witten simply postulated this term, while Veneziano 
assumed the unphysical field, the so-called the 
ÒVeneziano ghostÓ to saturate ÒwrongÓ (+)   sign.  

In Òdeformed QCDÓ this contact non-dispersive term 
with ÒwrongÓ sign (+) can be explicitly computed. It 
is originated from the tunnelings  between the  
degenerate topological sectors of the theory.                      
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IV. INSIGHTS FROM LATTICE SIMULATIONS AND FROM HOLOGRAPHIC PICTURE OF QCD

In this section we want to get some insights from the lattice results. The Monte Carlo simulations are normally
performed in Euclidean space. Therefore, we reformulate the low energy relations discussed in previous sectionsII and
III to Euclidean space time in order to make comparison with lattice results.

A. Topological susceptibility

The scalar correlation function in Euclidean space takes the form and it is negative
!
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while the topological susceptibility in the Euclidean space is positive
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The di�erence in signs4 between these two correlation functions can be seen in Minkowski space as well, see eq. (3)
versus (6). The crucial observation here is as follows: any physical state contributes to#Eucl with negative sign
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in drastic contrast with low energy relation (20). It poses no problem for the correlation function (19) when the
physical dilaton saturates the negative sign in eq.(19). At the same time the positive physical massm2

! ! > 0 for
the %" meson requires the positive sign for the topological susceptibility (20), see the original reference [33] for a
thorough discussion. Therefore, there must be a contact contribution to#, which is not related to any propagating
physical degrees of freedom, and it must have a Òwrong signÓ (in comparison with (21) representing the conventional
dispersive contribution) to saturate the positive sign for topological susceptibility (20). In di �erent words, it must be a
non-dispersive contribution to # which is not associated with any asymptotical physical states in conventional dispersion
relations. In the framework [34] the contact term with Òwrong signÓ has been postulated, while in refs.[32, 33] the
Veneziano ghost had been introduced to saturate the required property (20).

The simplest way to convince yourself in necessity for a non-dispersive contribution to# with a Òwrong signÓ is
to compute the topological susceptibility #QCD in QCD rather than in gluodynamics. The topological susceptibility
#QCD (mq = 0) = 0 must vanish in the chiral limit as a consequence of the Ward Identities (WI). It is very instructive to
see how it happens. If one models the contact contribution to# using the Veneziano ghost, the topological susceptibility
in Euclidean space can be represented as follows, see [9, 49] and references therein:
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where D c(m! ! x) is the GreenÕs function of a free massive particle with standard normalization
)

d4xm2
! ! D c(m! ! x) = 1.

The term proportional # D c(m! ! x) with negative sign in eq. (22) is resulted from the lightest physical %" state of mass
m! ! and it has a negative sign in accordance with (21). At the same time the &4(x) represents the ghost contribution
with ÒwrongÓ sign which can not be associated with any physical states. The ghostÕs contribution can be also thought
as the WittenÕs contact term [34] not related to any propagating degrees of freedom. The topological susceptibility
#QCD (mq = 0) = 0 vanishes in the chiral limit as a result of exact cancellation between two terms entering (22) in
complete accordance with WI. The WI can not be satisÞed if the contact term is not present in the system. When
mq &= 0 the cancellation is not complete and#QCD ' mq! øqq" in accordance with WI.

In case of Òdeformed QCDÓ considered in [40] we could explicitly compute the contact term and see that it is saturated
by the monopoles which in weak coupling regime describe the tunnelling processes between di�erent topological sectors
of the theory. While the topological sectors in case of strongly coupled 4d QCD of course still exist, we do not have

4 A warning signal with the signs: the physical degrees of freedom in Euclidean space (where the lattice computations are performed)
contribute to topological susceptibility �QCD with the negative sign, while the contact term (the Veneziano ghost) contributes with the
positive sign, in contrast with our discussions in Minkowski space, see eqs. ( 3), ( 6).
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NL
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This singular behaviour is a generic feature which 
is shared by many other models, including exactly 
solvable 2D Schwinger model and 4D QCD when it 
is saturated by the Veneziano ghost. 

This singular behaviour is also measured in the 
QCD lattice simulations at strong coupling, see 
plot below. 

The          should be understood as total divergence 
related to the infrared (IR) physics, determined by 
the boundary conditions

! (x)

! Y M !
!

" (x)d3x =
!

d3x #µ
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xµ
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#
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d! µ

"
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#
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The topological susceptibility        as a function of r.  Wrong sign for             !
     is well established phenomenon;  it has been tested on the lattice 
(plot above is from C. Bernard et al, LATTICE 2007).  This 
contribution is not related to any physical degrees of freedom, and 
can be interpreted as a contact term.   

! (r)

Contribution from 
physical degrees of 

freedom (negative sign 
with  Þnite width)

Contact  term  (positive sign +, 
vanishing width in continuum )

!
! (r = 0)



7.Topological action for deformed QCD
We wish to derive the (dual) topological action for 
Òdeformed QCDÓ in terms of the (dual) auxiliary 
topological fields. We will use exactly the same 
technique for  superfluid systems  (where instead 
of monopoles  we have fluctuating vortices )  

We reproduce our previous results on topological 
susceptibility using auxiliary topological fields 

a). we introduce abelian field 

b).  topological density is  

c). transformation properties are:
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tions. It can be represented in terms of the e! ective scalar! Þeld as follows
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k ! x). (21)

The vacuum expectation value ofA(a)
4 equals 2µa! /NL , where µa&b = %a

b and it plays the role of the Higgs Þeld in
this model as explained in [12, 13]. One can explicitly see that the topological charge in formula (21) for a single
monopole or antimonopole is properly normalized3 Q =

*
d4xq(x) = ±1/N .

Now we introduce truly singlet abelian Þeld f jk (x) #
+ N

a=1

$
A(a)

4

% !
F (a)

jk (x)
"

such that the topological density

operator q(x) for background monopoles is expressed in terms of this new Þeld as follows,

q(x) =
1

16! 2 tr Fµ ! ÷F µ! =
1

4! NL

,
"ijk #i f jk (x)

-
. (22)

One should emphasize that the expression on the right hand side of eq. (22) does not represent all properties of the
topological density operator, e.g. it does not include all non-abelian ßuctuations which are present in the system.
Rather it should be treated as a classical background long distance behaviour ofq(x). Further to this point: this
new abelian Þeldf jk (x) is not an abelian projection describing the abelianU(1)N magnetic monopoles in this model.
Rather, the combination "ijk #i f jk (x) describes the gauge invariant topological density distribution (22). Field f jk (x)
itself is not a gauge invariant object under generic gauge transformations. Indeed, from relationq(x) = #µ K µ (x)
one can infer that "ijk f jk (x) transforms like K i (x). Transformation properties of K µ (x) are well known: though this
object does not carry the colour indices, it is not a gauge invariant object. In fact,K µ (x) transforms in a nontrivial
way under the large gauge transformations. In particular

*
d3$µ K µ determines the winding number of a ÒdegenerateÓ

vacuum state. For our speciÞc case of deformed QCD we need to know the transformation properties for the following
operators,

,
"ijk #i f jk (x)

-
transforms like q(x) (i .e.invariant)

,
"ijk f jk (x)

-
transforms like K i (x). (23)

Furthermore, f jk (x) Þeld does not discriminate di! erent types of monopoles and anti-monopoles which are classiÞed
by the a" ne root of the Lie algebra&a $ # a! . Instead, this new Þeld is sensitive exclusively to the topological charge
density of these objectsQ =

*
d4xq(x) = ±1/N , not to their abelian magnetic charges% &a. As a Þnal comment:

there is no Maxwell dynamical term for this Þeld. This is in drastic contrast with dynamical Maxwell term ( " $)2

describing the abelian magnetic components in the e! ective action (7). There is no mystery here: as we shall discuss
below the dynamics off jk (x) is governed by pure topological Þeld theory with no Maxwell counterpart.

One can deÞne the gauge potentialai (x) in association with tensor Þeldf jk (x) introduced above and new scalar
potential a(x) describing the divergent portion of this tensor as follows:

f jk (x) # [#j ak (x) ! #k aj (x)] !
1
2

"ijk #i a(x). (24)

3 We believe a short historical detour on fractionalization of the topological charge in QFT is warranted here. In given context the
fractional topological objects appear in 2 dimensional CP N ! 1 model [31] which were coined as instanton quarks (instanton partons).
These quantum objects carry fractional topological charge Q = ± 1/N , and they are very similar to our monopoles in deformed QCD
discussed in section II A . These objects do not appear individually in path integral; instead, they appear as conÞgurations consisting
N di ! erent 1/N objects such that the total topological charge of each conÞguration is integer. Nevertheless, these objects are highly
delocalized: they may emerge on opposite sides of the space time or be close to each other with similar probabilities. Later on, similar
objects have been discussed in a number of papers in di ! erent context [ 32], [33], [34],[35],[36],[37]. In particular, it has been argued
that the well-established ! /N dependence in strongly coupled QCD unambiguously implies that the relevant conÞgurations in QCD
must carry the fractional topological charges, see review preprint [ 34] and references therein. The weakly coupled deformed QCD model
[12, 13] considered in this paper is a precise dynamical realization of this idea.
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object does not carry the colour indices, it is not a gauge invariant object. In fact,K µ (x) transforms in a nontrivial
way under the large gauge transformations. In particular

*
d3$µ K µ determines the winding number of a ÒdegenerateÓ

vacuum state. For our speciÞc case of deformed QCD we need to know the transformation properties for the following
operators,

,
"ijk #i f jk (x)

-
transforms like q(x) (i .e.invariant)

,
"ijk f jk (x)

-
transforms like K i (x). (23)

Furthermore, f jk (x) Þeld does not discriminate di! erent types of monopoles and anti-monopoles which are classiÞed
by the a" ne root of the Lie algebra&a $ # a! . Instead, this new Þeld is sensitive exclusively to the topological charge
density of these objectsQ =

*
d4xq(x) = ± 1/N , not to their abelian magnetic charges% &a. As a Þnal comment:

there is no Maxwell dynamical term for this Þeld. This is in drastic contrast with dynamical Maxwell term ( " $)2

describing the abelian magnetic components in the e! ective action (7). There is no mystery here: as we shall discuss
below the dynamics off jk (x) is governed by pure topological Þeld theory with no Maxwell counterpart.

One can deÞne the gauge potentialai (x) in association with tensor Þeldf jk (x) introduced above and new scalar
potential a(x) describing the divergent portion of this tensor as follows:

f jk (x) # [#j ak (x) ! #k aj (x)] !
1
2

"ijk #i a(x). (24)

3 We believe a short historical detour on fractionalization of the topological charge in QFT is warranted here. In given context the
fractional topological objects appear in 2 dimensional CP N ! 1 model [31] which were coined as instanton quarks (instanton partons).
These quantum objects carry fractional topological charge Q = ± 1/N , and they are very similar to our monopoles in deformed QCD
discussed in section II A . These objects do not appear individually in path integral; instead, they appear as conÞgurations consisting
N di ! erent 1/N objects such that the total topological charge of each conÞguration is integer. Nevertheless, these objects are highly
delocalized: they may emerge on opposite sides of the space time or be close to each other with similar probabilities. Later on, similar
objects have been discussed in a number of papers in di ! erent context [ 32], [33], [34],[35],[36],[37]. In particular, it has been argued
that the well-established ! /N dependence in strongly coupled QCD unambiguously implies that the relevant conÞgurations in QCD
must carry the fractional topological charges, see review preprint [ 34] and references therein. The weakly coupled deformed QCD model
[12, 13] considered in this paper is a precise dynamical realization of this idea.

Construction:



d). insert  the  delta function  into the path  
integral with field           as a Lagrange multiplier 

e). treat                   fields as external slow varying 
background fields 

f). the topological action                         is induced: 

!

Next steps : we will demonstrate that        is exactly 
reproduced by using                       . Also: the 
topological fields in this model can  be identified 
with auxiliary Veneziano ghost (postulated in 1980 
to saturate the topological susceptibility        ).

!
!

q(x) !
1

4"NL

"
#ijk $i f jk (x)

#
$

"
%

D[b]ei
!

d4 x b(x )á(q(x ) ! 1
4 !NL [! ijk " i f jk (x )]) ,

b(x)

b(x), f ij (x)
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The ai (x), a(x) potentials in eq.(24) are not directly related to the abelian magnetic potentials and e! ective ! Þelds
discussed above. The fractional topological charge of the monopoles can be expressed in terms ofa(x) potential as
follows,

Q =
!

R3 ! S1
d4xq(x) =

1
4! N

!

R3
d3x

"
"ijk #i f jk (x)

#

=
! 1

4! N

!

R3
d3x $" 2a(x) =

! 1
4! N

$

�
d$" á$" a(x), (25)

where surface" deÞnes the boundaries of our system. We have to take this surface to inÞnity if we deÞne our
system on R3. Our normalization is chosen in a such a way that a single monopole classiÞed by%a and fractional
topological chargeQ = 1 /N is described by an e! ective long distance Þelda(x) which satisÞes$" 2a(x) = ! 4!&3(x)
with asymptotic behaviour a(x) = 1 / |x |.

Our next step is to insert the delta function into the path integral with Þeld b(x) as a Lagrange multiplier

&
%

q(x) !
1

4! NL

"
"ijk #i f jk (x)

#
&

#
!

D[b]ei
!

d4 x b(x )á(q(x ) " 1
4 ! NL [! ijk " i f jk (x )]) , (26)

where q(x) # tr
'
Fµ# ÷F µ#

(
in this formula is treated as the original expression (4) for the topological density operator

including the fast non-abelian gluon degrees of freedom, whilef jk (x) is treated as a slow-varying external source
describing the large distance physics for a given monopoleÕs conÞguration, similar to the treatment in ref. [17] of
external currents for quasiparticles.

Our task now is to integrate out the original non-abelian fast degrees of freedom and describe the large distance
physics in terms of slow varying Þelds in form of the e! ective action S[! , f jk , b]. We use the same semiclassical
approximation as we did before which is expressed in terms of the low energy e! ective action (6). The only new
element in comparison with previous computations is that the fast degrees of freedom must be integrated out in the
presence of new slow varying background Þeldsf jk , b which appear in eq. (26). Fortunately, the computations can
be easily performed if one notices that the background Þeldb(x) enters eq. (26) exactly in the same manner as
' parameter enters (6). Therefore, assuming that b(x) is slow varying background Þeld we arrive to the following
e! ective action

Z #
!

D[b]D[! ]D[f ]e" Stop [b,f ]" Sdual [! ,b] (27)

S top [b, f ] =
i

4! N

!

R3
d3xb(x)"ijk #i f jk (x)

=
! i

4! N

!

R3
d3xb(x) $" 2a(x);

S dual [! , b] =
!

R3
d3x

1
2L

) g
2!

* 2
(" ! )2

! (
!

R3
d3x

N+

a=1

cos
%

%a á! +
' + b(x)

N

&
.

There are two new elements in comparison with our previous expression (7). First, the topological term Stop emerges.
This term can be also written as

Stop = ! i
!

R3
d3x

bi (x)"ijk f jk (x)
4! N

, bi (x) $ #i b(x), (28)

which brings4 it into the line with conventional expression employed in the Higgs model [17]. The second new element
which appears in (27) is that Sdual [! , b] now depends on pure topological Þeldb(x) which has no Maxwell counterpart.

4 In fact, the constraints on field bi (x ) from [17] require that bi (x ) ! �i � when the boundary of R3 is a topologically trivial S2 , such that
we are not loosing much information with identification bi (x ) " �i b(x ) in eq. (28).

S
top

[ f jk (x), b(x)]

S
top

[ f jk (x), b(x)]
! Y M

! Y M



We want to compute the  susceptibility by 
integrating out auxiliary                    fields 

!

!

All Gaussian integrals can be explicitly executed. 
4-derivatives  action is the manifestation  of the 
Òwrong signÓ for the contact term    

!

It precisely reproduces  our original formula 
which  was derived by explicit summation over all 
possible monopoles  with different orientations.

8. Computation of          using Stop [ f jk (x), b(x)]! Y M

b(x), f ij (x)
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One should comment here that we neglected the surface terms in expression forStop [b, f ] such that only scalar
potential a(x) from eq. (24) enters the Þnal expression forStop [b, f ]. These surface terms very often are crucial
in similar studies in condensed matter systems deÞned on a Þnite manifold with the boundaries which may have
nontrivial topologies such as torus. These surface terms are known to be responsible for the dynamics of the so-called
Òedge statesÓ in topological Þeld theories. We come back to this point later in the text. However, for the purpose
of this work the surface terms can be neglected as we mostly discuss a trivial topologyS2 in this work. There is no
physical degeneracy in this case and the system itself is characterized by a single unique vacuum state. Nevertheless,
the topological feature of the theory such as the topological long range order described by topological action (27),
(28) does not go away when topologically trivial manifold is considered.

In fact, these features are manifested in a di! erent way. To be more speciÞc, the main goal of the rest of the section
is to argue that the well-known resolution of the celebratedU(1)A problem is a direct consequence of the topological
order described by topological action (27), (28). In di ! erent words, we want to argue that the (would be) Goldstone
boson receives its mass in this system (in apparent contradiction with conventional symmetry arguments) as a result
of topological features of the Chern-Simons action (28).

B. Topological susceptibility in BF theory.

We now want to compute the correlation function !q(x), q(0)" entering the expression for the topological suscepti-
bility ( 15) by integrating out b, a Þelds

!q(x), q(0)" =
1
Z

!
D[b]D[! ]D[a]e! S !# 2a(x), !# 2a(0)

(4" NL )2 .

To carry out the computations we limit ourself by considering # = 0 vacuum state where ! ! " = 0 for the massive !
Þelds. We expand the cos term in (27) by keeping the quadratic term for long range Þeldb(x),

$
N"

a=1

cos
#

b(x)
N

$
$ $N

%

1 %
1
2

#
b(x)
N

$ 2
&

. (29)

Now, the obtained Gaussian integral overD[b] can be explicitly executed, and we are left with the following Gaussian
integral over D[a]

!q(x), q(0)" =
1
Z

!
D[a]e! S[a] !# 2a(x), !# 2a(0)

(4" NL )2 (30)

S[a] =
1

2N $
1

(4" )2

!

R3
d3x

'
a(x) !# 2 !# 2a(x)

(

As the next step we rescalea(x) Þeld

a"(x) &
a(x)

4"
'

N $
(31)

to bring S[a] to more conventional form

S[a"] =
1
2

!

R3
d3x

'
a"(x) !# 2 !# 2a"(x)

(
(32)

With this normalization, the corresponding Gaussian integral over
)

D[a"] can be easily computed

)
D[a"]e! S[a! ]

'
!# 2a"(x), !# 2a"(0)

(

)
D[a"]e! S[a! ]

= %3(x), (33)

where S[a"] is deÞned by eq. (32). Now we are ready to complete the computations of the topological susceptibility
using the topological BF action (27). We express the original topological density operator (25) in terms of a(x)
and take into account the expression for Gaussian integral (33). Final expression for the gauge invariant correlation
function

!q(x), q(0)" =
$

NL 2 %3(x) (34)

!q(x), q(0)" =
1
Z

!
D[a]e! S[a] !# 2a(x), !# 2a(0)

(4"NL )2

S[a] =
1

2N#
1

(4" )2

!

R3
d3x

"
a(x) !# 2 !# 2a(x)

#



One can also compute a gauge variant  correlation 
function   

This object is very similar to the Veneziano ghost. 
The unphysical pole has precisely the same nature. 
The transformation properties             are the same 
as in the Veneziano construction 

We identify our topological                fields 
constructed for the deformed QCD  with the 
effective Veneziano  ghost.  This identification 
uncovers the nature of the Veneziano ghost  as an 
effective topological  non-propagating field .  

Formulation of this phenomenon in terms of the 
topological                      is a matter of taste:   
fields are not dynamical. Still they saturate    
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precisely reproduces the original formula (15) which was derived without any mentioning of any auxiliary Þelds [23].
One can also compute a gauge variant correlation function

lim
k! 0

!
d3xeikx !" i a(x), " j a(0)# $

ki kj

k4
. (35)

This object is very similar to the computations (13) using the Veneziano ghost. The unphysical pole (35) has precisely
the same nature as the pole (13) in the Veneziano construction (13). In fact, the transformation properties of our
Þeld " i a(x) are the same asKi (x ) Þeld (23) in the Veneziano construction (13).

Based on this observation and comparing (13) with ( 35) we identify our topological Þelds constructed for the
deformed QCD with the e! ective Veneziano ghost. This identiÞcation uncovers the nature of the Veneziano ghost
as an e! ective topological non-propagating Þeld. In both cases this pole is not related to any physical massless
degrees of freedom which are not present in the system as the theory is gapped. Rather, it contributes to the non-
dispersive portion of the gauge invariant correlation function (12), (14), (34). Still, this unphysical topological Þeld
does contribute to the ⇤ dependent portion of the ground state energy.

In weakly coupled deformed QCD one can carry out all the computations without even mentioning the topological
Þelds or the Veneziano ghost as formula (15) shows. However, formulation of this phenomenon in terms of the
topological QFT reveals its deep nature which is otherwise hard to understand. As explained above this contact
term (34) is not related to any physical propagating degrees of freedom. In computations (15) it emerges as a result
of the tunnelling transitions between the degenerate topological sectors. The non-dispersive nature of this term in
present computations (based on topological e! ective Lagrangian (27)) is manifested itself in saturation of the ⇧Y M
by non-propagating, non-dynamical long rangeb(x), a(x) Þelds. These Þelds are not dynamical Þelds as they do not
have the Maxwell counterpart. Nevertheless, these Þelds are crucial as they saturate the non-dispersive contact term
in topological susceptibility, as we have demonstrated above.

Entire framework advocated in this paper is in fact a matter of convenience rather than necessity. The same comment
also applies to CM systems: the BF formulation [14Ð19] using the topological QFT is simply a matter of convenience
to represent the known and previously established results (such as braiding phases, the ground state degeneracy, etc)
using a beauty of topological quantum Þeld theory. As we shall discuss in sectionIV the manifestations of this long
range order in QCD and in CM systems are somewhat di! erent, but the beauty of the topological BF formulation
remains the same.

C. The mass generation for (would be) Goldstone boson in topologically ordered system

We want to reproduce the behaviour (17) in deformed QCD using an appropriate generalization of the topological
BF action (27) when the massless quarks are introduced into the system. This study will further illuminate the
relation between the auxiliary a(x), b(x) Þelds and the unphysical Veneziano ghost. To proceed with this task we
have to introduce the light matter Þeld which is represented in this model by the⇥" -Þeld [23]. If ⇧Y M were vanished
the ⇥" would be conventional massless Goldstone boson which is nothing but the phase of the chiral condensate.
However,⇧Y M %= 0 in 4d QCD ( 12) as well as in deformed QCD (15). In di ! erent words, the⇥" Þeld receives its mass
exclusively as a result of generating of the nonzero contribution to⇧Y M with Òwrong signÓ (12), which is the key
element in resolution of the celebratedU (1)A problem [24Ð29]. In context of the present work we want to see how
the ⇥" physical contribution exactly cancels (as Ward Identities require) the non-dispersive term in the topological
density (17). We want to see how it happens in BF formulation using the topological action (27). It will shed a new
light on a very deep relation, already mentioned above, between the Veneziano ghost and the topologicala(x), b(x)
Þelds. Essentially we want to see how the (would be) Goldstone boson becomes a massive Þeld in topological QFT in
apparent contradiction with conventional symmetry arguments.

In the dual sine-Gordon theory the ⇥" meson Þeld appears exclusively in combination with the⇤ parameter as
⇤ & ⇤ ' ⌅(x), where ⌅ is the phase of the chiral condensate which, up to dimensional normalization parameter, is
identiÞed with physical ⇥" meson in QCD. As it is well known, this property is the direct result of the transformation
properties of the path integral measure under the chiral transformations⌃ & exp(i�5

!
2 )⌃. Therefore,⌅(x) enters the

e! ective action exactly in the same way as theb(x) Þeld does as it couples to the topological density operator exactly
in the same way (26). Therefore, one can integrate out the fast degrees of freedom exactly in the same way as we did

K i (x) ! " i a(x)

Stop [f jk (x), b(x)]

! i a(x)

! Y M

a(x), b(x)

a(x), b(x)



One can generalize this construction to include 
massless quarks. The result is 

The celebrated            problem is resolved in this 
framework exclusively as a result of dynamics of 
the topological                fields. 

The WI are satisfied as a result of exact 
cancellation between the non-dispersive 
topological contribution and physical     field: 

!

The generation of the       mass is a result of 
mixture of the Òwould beÓ Goldstone field with 
non-propagating long ranged  topological field . 
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while a⇥(x) field is expressed in terms of new fields ! 1(x) and !̂ (x) as

a⇥(x) !
1

m��

�
!̂ (x) " ! 1(x)

⇥
, (46)

while the topological density q(x) operator is expressed in terms of these fields as follows

q =

⇧
"

NL 2
## 2a⇥ =

⌃
"

NL 2m2
��

## 2
�

!̂ " ! 1

⇥
. (47)

This redefinition obviously leads to our previous result (42), (44) when we use the Green’s functions determined by
the Lagrangian (45) for the physical massive field !̂ and the ghost ! 1,

$q(x), q(0)%QCD =
"

NL 2

⇤
$(x) " m2

��
e�m ! � r

4%r

⌅
. (48)

It is quite amazing that precisely this structure (45) had emerged previously in study of of the U(1)A problem in 2d
Schwinger model in Kogut-Susskind (KS) formulation [38], see also [39] with related discussions. Topological density

operator in 2d Schwinger model &µ⇥F µ⇥ is also expressed as &µ⇥F µ⇥ & ' µ ' µ
�

!̂ " ! 1

⇥
similar to (47). Furthermore,

one can show that this structure still holds even with non-vanishing quark mass mq, in which case an additional term

& mq cos(!̂ + ! 2 " ! 1) appears in e! ective action (45), similar to analogous expression in KS description [38]. In fact,

our notations for !̂ , ! 1, ! 2 fields entering (45) are precisely the same notations which had been used in ref. [38] to
emphasize the similarity. Furthermore, analogous structure also emerges in 4d QCD when the the topological density
operator is expressed in terms of the Veneziano ghost where q & ! (!̂ " ! 1) has precisely the same structure [40].

An important point here is that the contact term in this framework is explicitly saturated by the topological non-
propagating auxiliary fields expressed in terms of the ghost field ! 1, similar to 2d KS ghost or 4d Veneziano ghost 5.
From our original formulation without any auxiliary fields reviewed in section II B it is quite obvious that our theory
is unitary and causal. When we introduce the auxiliary fields (which are extremely useful when one attempts to study
the long range order) the unitarity, of course, still holds. Formally, the unitary holds in this formulation because the
ghost field ! 1 is always paired up with ! 2 in each and every gauge invariant matrix element as explained in [38] (with
the only exception being the topological density operator (47) which requires a special treatment presented in this
section). The condition that enforces this statement is the Gupta-Bleuler-like condition on the physical Hilbert space
Hphys which reads like

(! 2 " ! 1)
(+) |H phys%= 0 , (49)

where the (+) stands for the positive frequency Fourier components of the quantized fields. The crucial point here is
that the formulation of the theory using the topological fields has an enormous advantage as the long range order is
explicitly present in formulation (27), (36) and therefore, in equivalent formulation in terms of the ghost field as eq.
(45) states.

¥ Our arguments, based on analysis of a simplified version of QCD essentially suggest that this key element of
the U(1)A problem represented by eq.(15) is a direct manifestation of the long distance topological action (27), (28),
(36). Similar structure in CM systems is known to describe topologically ordered phases. It is naturally to assume
that the deformed QCD also belongs to a topologically ordered phase. Furthermore, one can explicitly see from our
computations above that the ( ⇥ generates its mass as a result of mixture of (would be) Goldstone field with topological
auxiliary field. Therefore, we interpret the well known resolution of the U(1)A problem in deformed QCD as a result
of dynamics of a topological Þelddescribing the long range order of the system.

5 It is important to emphasize that KS and Veneziano ghosts should not be confused with the conventional Fadeev-Popov ghost which
is normally introduced into the theory to cancel out unphysical polarizations of the gauge Þelds. Instead, the KS, Veneziano ghost is
introduced to account for the existence of topological sectors in the theory, see [ 39] for references and details. In four dimensional case
the Veneziano ghost can not be confused with Fadeev-Popov ghost as the Veneziano ghost being a singlet does not carry a colour index,
in contrast with Fadeev-Popov ghost. The sole purpose of the Veneziano ghost is to saturate the contact term with Òwrong signÓ in
topological susceptibility, similar to eq. ( 48) in deformed QCD model.

a(x), b(x)

U(1)A

! !

! !

�QCD(mq = 0) =
!

d

4
x < q(x), q(0) >QCD= 0



9. Auxiliary topological fields for 
superfluid system 

We want to repeat our previous construction 
(tested in Òdeformed QCDÓ model) by replacing the 
monopoles classified by topological charge Q to 
the vortices classified by winding number I.  

Instead of summation over all monopoleÕs colour 
orientations and their positions we have to sum 
over all possible vortices and their shapes.  

Technically it is done by introducing a density  
circulation         for a generic configuration of       
vortices and  insertion of the              function

n(i )j k (x)
! [j k (x)]

j k (x) =
!

i

2!n ( i ) " 2
k

"
x ! ! x ( i )

! (xk )
#

,

!
!

j k (x) !

"
"ijk #i gj (x)

#

2$

$
"

%
D[bi ]e

i
!

d3 x bk (x )á
&

j k (x ) ! 1
2 !

"
! ijk " i gj (x )

#'
,



in this formula           is acting as the Lagrange 
multiplier, while                                                        
is treated as slow-varying external auxiliary field. 

In the ideal case of infinitely thin and static 
vortices (keeping the quadratic terms in the 
Hamiltonian only) the partition function assumes 
the form 

bi (x)
! k (x) = "ijk #i gj (x) = !" 2ak (x)

Z !
!

D[b]D[a]D[! ]e! !
"

H G [b," ]+ H int [a]+ H top [b,a]
#

"H top [b, a] = "
i

2#

!

M
d3xbk (x) $# 2ak (x),

H int [a] = "
%
2

!

M
d3x ak (x) $# 2ak (x),

HG [b, ! ] =
nS

2m

!

M
d3x

$
&i ! (x) " bi (x)

%2
.



In this formula            is the Goldstone field, 
while                     are the auxiliary topological 
fields which play the same role as                      in 
our previous studies of the Òdeformed QCDÓ  

One can shift the variables to bring the 
hamiltonian to the diagonal form to complete the 
computations of the winding susceptibility

! (x)
(ai (x), bi (x))

(a(x), b(x))

!
!! 2ak (x)

2"

"

=

!
!! 2a!

k (x)
2"

"

+ i
# ns

mT

$
#k $(x).

H tot [a, ! ]
T

=
!

mT
2ns

"
á
#

M
d3x

$
"! 2a!

k (x)
2#

%2

+
#

M
d3x

&' ns

2mT

( )
$k ! (x)

*2
"

%
2T

a!
k (x) "! 2a!

k (x)
+

.

! I 2"



10. Winding number susceptibility  
It is convenient to represent         as a combination 
of two terms (Goldstone field contribution       and 
the auxiliary topological field contribution          ) 

!

!

!

The first term (due to the Goldstone            field)                 
is easy to compute: 

! I 2"
! I 2"

! I 2" = lim
k ! 0

!

M
d3x

!

M
ei k á(x " x ! ) d3x#"I (! ) + I (a#

k )
#

I (! ) = ! " k ! (x), " k ! (x#)"

I (ak ) = #
$

mT
ns

%2

!
#$ 2a#

k (x)
2$

,
#$ 2a#

k (x#)
2$

",

! I 2"! =
!

d3x
!

d3x! á I(! ) =
"

3mT
ns

#
V.

! (x)

I (a!
k )

I (! )



Computation of another term, related to the 
auxiliary topological fields                    ,  is a 
less trivial task because it involves the operator 
with 4 derivatives  

!

The integral is gaussian and can be exactly 
executed:  

(ai (x), bi (x))

Htot [a]
T

=
!

mT
2ns

" #
d3x

a!
k (x)
2!

$"! 2 "! 2 " ! 2
!

"! 2%a!
k (x)
2!

,

I (ak ) = !
!

mT
2!n s

" 2 #
D[a!]e" H [a ]

T "" 2a!
k (x), "" 2a!

k (x !)
#

D[a!]e" H [a ]
T

= ! 3
!

mT
ns

" $

#(x ! x !) ! ! 2
!

e" ! ! |x " x 0|

4! |x ! x ! |

%

, ! 2
! # (2! )2

& $ns

mT 2

'



It is instructive to compute the correlation 
function                       itself for better 
understanding of the topological auxiliary field: 

!

The result for this (gauge- dependent) function is 

!

It should be compared with QCD computations 
(when the Veneziano ghost manifests itself  as the 
IR topologically protected pole at            ):            

!a!
i (x), a!

j (x !)"

I (ak) = !! 2
x

!! 2
x ! Vii(ak), Vij(ak) = "

!
mT
ns

" 2

#
a0
i(x)
2"

,
a0
j(x

0)

2"
$

Vij (ak ) = !
!

mT
2!n s

" 2 #
D[a!]e" H [a ]

T a!
i (x), a!

j (x !)
#
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1. Our approximation is justified for heavy static 
vortices. It is obviously not the case when the 
temperature approaches the critical value             
when the vortices become light and fat. They also 
strongly  fluctuate.  

2. Our assumption is justified a posteriori: static 
configurations in form of                   saturate      . 
The interactions do not drastically change the 
structure of the        . This specific correlation 
function is Òt opologically rigid Ó with respect to 
the neglected interactions  and time dependence.  

3.This argument is supported by similar analysis 
for          in QCD when Òstatic deformed QCDÓ and 
the 4D dynamical strongly coupled QCD lead to 
similar structures for this correlation function.           

Few importnat comments: 

T ! Tc

! I 2"

!Q2"

(ai (x), bi (x)) ! I 2"



4. The emergent structure is identically the same 
as for the Òdeformed QCDÓ model with the same 4-
derivative operator generating the contact term; 

5. mass gap is generated exactly in the same  way as 
in the resolution of the U(1) problem  in QCD: 
mass gap  emerges as a result of mixture of the 
topological fields with the Goldstone field; 

6. The corresponding gapped quasiparticle (we 
call it ÒvortonÓ)  cannot be identified with roton 
because the gap vanishes at T_c. 

7. The ÒvortonsÓ  mostly contribute to       . The 
vortonsÕs  contribution to other correlation 
functions is strongly suppressed, similar to 
Veneziano ghost behaviour: it contributes to       .   

! I 2"

!Q2"



11. QCD vs Superfluidity:         vs

We observed a number of formal similarities 
between computations of        and       :  

in both cases the effective description is  
formulated in terms of the dual auxiliary non-
propagating fields                        in superfluid 
systems, and                    in Òdeformed QCDÓ model; 

These fields effective describe the real superfluid 
vortices and Euclidean monopoles correspondingly 

In both cases the contact terms emerge as a result 
of 4-derivative operator in effective action. It is 
also a source of generating the mass gap in the 
systems as a result of mixture of the Goldstone 
fields with dual topological auxiliary fields.  

!Q2" ! I 2"

!Q2" ! I 2"

(ai (x), bi (x))
(a(x), b(x))



These formal similarities should not hide the 
fundamental difference  between QCD and 
superfluid systems: 

The monopoles are the pseudo-particles  
describing the tunnelling transitions between 
different topological sectors. They live in 
Euclidean space . The vortices live in real 
Minkowski space-time  and  observed in real 
experiments; pseudo-particles can be studied in 
the lattice MC simulations 

However, there is a common denominator 
between the two systems: In both cases there is 
a (hidden) long range order expressed in terms 
of non-physical IR pole  at            in gauge 
dependent correlation functions. This pole, 
nevertheless generates physical contact terms. 

p2 = 0



12. Conclusion
The basic point  is that two correlation functions 
in two different systems  exhibit analogous 
structures  and amazing conceptual similarities 
between QCD and superfluidity: 

!

The phase transition in superfluid systems is 
known to occur as a result of drastic changes of 
the percolated network of vortices 

If we assume that the analogy between the two 
systems is sufficiently deep, we may ask the 
following question:  

what kind of objects play the role of superfluid 
vortices in QCD responsible for the transition?

hI 2i ⇠ ! 2 ln Z
!"s 2 , hQ2i ⇠ ! 2 ln Z

!# 2 , "s = ns("v s � "v n )



In principle this question can be numerically 
studied by changing the size ÒLÓ of the system in 
Òdeformed QCDÓ model when monopoles should 
slowly transform into  some more complicated 
structure (center vortices , domain wallsÉ?)   

While description of these two systems is very 
different in terms of the original objects 
(monopoles, vortices), the dual description  of           
versus         in terms of the auxiliary topological 
non-propagating fields is very much the same           

!

Our hope is that the observed similarities (in 
dual terms) may generate new ideas benefitting 
both fields, as it previously  happened in history 
of physics a  numerous number of times.

[a(x), b(x)] ! Òdeformed QCDÓ vs [ai (x), bi (x)] ! superßuid systems
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