Unraveling the complexity of nuclear systems: single-particle and collective aspects through the looking glass

Possible strategies for merging structure and reaction theories in the study of nuclei close to the dripline

Discussion session

ECT*, Trento, February 2017

From the many-body problem to the few-body picture

Microscopic models

- Fragments described microscopically
- Realistic NN interactions (Pauli properly accounted for)
- * Numerically demanding / not simple interpretation.

Microscopic models

- Fragments described microscopically
 - Realistic NN interactions (Pauli properly accounted for)
 - Numerically demanding / not simple interpretation.

Inert cluster models

- **x** Ignores cluster excitations (only few-body d.o.f).
- * Phenomenological inter-cluster interactions (aprox. Pauli).
- Exactly solvable (in some cases).
- Achieved for 3-body and 4-body (coupled-channels, semiclassical).

Microscopic models

- Fragments described microscopically
 - Realistic NN interactions (Pauli properly accounted for)
 - Numerically demanding / not simple interpretation.

Non-inert-core few-body models

- Few-body + some relevant collective d.o.f.
- Pauli approximately accounted for.
- Achieved for 3-body problems (coupled-channels).

Inert cluster models

- Ignores cluster excitations (only few-body d.o.f).
- * Phenomenological inter-cluster interactions (aprox. Pauli).
- Exactly solvable (in some cases).
- Achieved for 3-body and 4-body (coupled-channels, semiclassical).

Core excitation in breakup: frozen-halo picture

$$\boxed{\Psi_{JM}(\vec{r},\xi) = \left[\varphi^{J}_{\ell,j}(\vec{r}) \otimes \Phi_{I}(\xi)\right]_{JM}}$$

- $\Rightarrow \varphi_{\ell,j}^J(\vec{r})$ = valence particle wavefunction
- \Rightarrow $\Phi_I(\xi)$ = core wavefunction (*frozen*)

Core excitation in breakup: frozen-halo picture

$$\Psi_{JM}(\vec{r}, \xi) = \left[\varphi_{\ell,j}^J(\vec{r}) \otimes \Phi_I(\xi) \right]_{JM}$$

- $\Rightarrow \varphi_{\ell,j}^J(\vec{r})$ = valence particle wavefunction
- \Rightarrow $\Phi_I(\xi)$ = core wavefunction (*frozen*)

How do core excitations affect the breakup of weakly-bound nuclei?

$$\Psi_{JM}(\vec{r}, \xi) = \sum_{\ell,j,l} \left[\varphi^J_{\ell,j,l}(\vec{r}) \otimes \Phi_I(\xi) \right]_{JM}$$

$$3/2_{1}^{+} \xrightarrow{\textbf{3.41 MeV}} e[{}^{10}Be(0^{+}) \times 1d_{3/2}] + f[{}^{10}Be(2^{+}) \times 2s_{1/2}]$$

$$5/2_{1}^{+} \xrightarrow{\textbf{1.78 MeV}} c[{}^{10}Be(0^{+}) \times 1d_{5/2}] + d[{}^{10}Be(2^{+}) \times 1d_{5/2}]$$

$$1/2_{1}^{-} \xrightarrow{\textbf{0.32 MeV}} A[{}^{10}Be(0^{+}) \times 1p_{1/2}] + B[{}^{10}Be(2^{+}) \times 1p_{3/2}]$$

$$1/2_{1}^{+} \xrightarrow{\textbf{11}} Be \qquad a[{}^{10}Be(0^{+}) \times 2s_{1/2}] + b[{}^{10}Be(2^{+}) \times 1d_{5/2}]$$

How do core excitations affect the breakup of weakly-bound nuclei?

$$\Psi_{JM}(\vec{r},\xi) = \sum_{\ell,j,l} \left[\varphi_{\ell,j,l}^{J}(\vec{r}) \otimes \Phi_{I}(\xi) \right]_{JM}$$

$$3/2_{1}^{+} \frac{3.41 \text{ MeV}}{5/2_{1}^{+}} \text{ e} \left[{}^{10}\text{Be}(0^{+}) \times 1 \text{d}_{3/2} \right] + f \left[{}^{10}\text{Be}(2^{+}) \times 2 \text{s}_{1/2} \right]$$

$$5/2_{1}^{+} \frac{1.78 \text{ MeV}}{1/2_{1}^{-}} \frac{0.32 \text{ MeV}}{1/2_{1}^{+}} \frac{A \left[{}^{10}\text{Be}(0^{+}) \times 1 \text{d}_{3/2} \right] + A \left[{}^{10}\text{Be}(2^{+}) \times 1 \text{d}_{5/2} \right]}{1/2_{1}^{+}} \frac{0.32 \text{ MeV}}{1/2_{1}^{+}} \frac{A \left[{}^{10}\text{Be}(0^{+}) \times 1 \text{d}_{3/2} \right] + B \left[{}^{10}\text{Be}(2^{+}) \times 1 \text{d}_{5/2} \right]}{1/2_{1}^{+}} \frac{1}{11} \frac{1}{12} \frac$$

© Core excitations may affect the structure and the dynamics of the reaction

Evidence of *dynamical* core excitations in p(11Be,p') at 64 MeV/u (MSU)

Data: Shrivastava et al, PLB596 (2004) 54 (MSU)

R.de Diego et al, PRC85, 054613 (2014)

- E_{rel} =0–2.5 MeV contains 5/2⁺ resonance (expected single-particle mechanism)
- E_{rel}=2.5–5 MeV contains 3/2⁺ resonance (expected core excitation mechanism)
- Dynamic core excitations gives additional (and significant!) contributions to breakup

Beyond the particle-plus-core picture

How to model other nuclei with not so simple two-body structure?
 (eg. not closed-shell cores)

Eg.:
$${}^{19}C = {}^{18}C + n?$$
, ${}^{31}Ne = {}^{30}Ne + n$

- Some requirements (constraints):
 - At least degrees of freedom entering dynamically (actively)
 - Not too simplistic (eg. particle-rotor)
 - But maybe also not too complicated (need to be used in possibly complicated reaction calculation, and not hinders physics)
 - Usually, we need both bound and continuum states (overlaps, wavefunctions...)