You are here

Dyson-Schwinger Approach to Color-Superconductivity: Effects of Selfconsistent Gluon Dressing

Daniel Mueller,
Michael Buballa,
Jochen Wambach
The phase diagram of dense QCD at nonvanishing temperatures and large quark chemical potentials is studied with Dyson-Schwinger equations for 2+1 quark flavors, focusing on color-superconducting phases with 2SC and CFL-like pairing. The truncation scheme of our previous investigations is extended to include the dressing of gluons with selfconsistently determined quarks, i.e., taking into account the dynamical masses and superconducting gaps of the quarks in the gluon polarization. As a consequence the gluon screening is reduced, leading to an enhancement of the critical temperatures of the color-superconducting phases by about a factor of 2 as compared to the case where the gluons are dressed with bare quarks. We also calculate the Debye and Meissner masses of the gluons and show that they are consistent with weak-coupling results.
e-Print file: